Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawei Jiang is active.

Publication


Featured researches published by Dawei Jiang.


ACS Nano | 2016

Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles

Liang Cheng; Anyanee Kamkaew; Haiyan Sun; Dawei Jiang; Hector F. Valdovinos; Hua Gong; Christopher G. England; Shreya Goel; Todd E. Barnhart; Weibo Cai

Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. Herein, we develop an organic photodynamic therapy (PDT) system based on polyethylene glycol (PEG)-coated nanomicelles conjugated with ∼20% chlorin e6 (PEG-Ce 6 nanomicelles), which functions as an optical imaging agent, as well as a PDT agent. The formed PEG-Ce 6 nanomicelles with the size of ∼20 nm were highly stable in various physiological solutions for a long time. Moreover, Ce 6 can also be a (64)Cu chelating agent for in vivo positron emission tomography (PET). By simply mixing, more than 90% of (64)Cu was chelator-free labeled on PEG-Ce 6 nanomicelles, and they also showed high stability in serum conditions. Both fluorescence imaging and PET imaging revealed that PEG-Ce 6 nanomicelles displayed high tumor uptake (13.7 ± 2.2%ID/g) after intravenous injection into tumor-bearing mice at the 48 h time point. In addition, PEG-Ce 6 nanomicelles exhibited excellent PDT properties upon laser irradiation, confirming the theranostic properties of PEG-Ce 6 nanomicelles for imaging and treatment of cancer. In addition, PDT was not shown to render any appreciable toxicity. This work presents a theranostic platform based on polymer nanomicelles with great potential in multimodality imaging-guided photodynamic cancer therapy.


ACS Applied Materials & Interfaces | 2016

Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging

Dawei Jiang; Yanhong Sun; Jiang Li; Qian Li; Min Lv; Bing Zhu; Tian Tian; Dengfeng Cheng; Jiaoyun Xia; Lan Zhang; Lihua Wang; Qing Huang; Jiye Shi; Chunhai Fan

In this work, we have developed multiple-armed DNA tetrahedral nanostructures (TDNs) for dual-modality in vivo imaging using near-infrared (NIR) fluorescence and single-photon emission computed tomography (SPECT). We found that the presence of arm strands in TDNs remarkably enhanced their in vitro stability, allowing them to stay intact for at least 12 h in serum. By using NIR fluorescence imaging, we evaluated in mice the pharmacokinetics of TDNs, which exhibited distinctly different in vivo biodistribution patterns compared with those of double-stranded (ds)DNA. We also noticed that TDNs had twofold longer circulation time in the blood system than that of dsDNA. With the use of multiple-armed TDNs, we could precisely anchor an exact number of functional groups including tumor-targeting folic acid (FA), NIR emitter Dylight 755, and radioactive isotope (99m)Tc on prescribed positions of TDNs, which showed the capability of targeted imaging ability in cancer cells. Furthermore, we realized noninvasive tumor-targeting imaging in tumor-bearing mice by using both NIR and SPECT modalities.


Advanced Functional Materials | 2017

Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-Guided Photodynamic Cancer Therapy

Liang Cheng; Dawei Jiang; Anyanee Kamkaew; Hector F. Valdovinos; Hyung-Jun Im; Liangzhu Feng; Christopher G. England; Shreya Goel; Todd E. Barnhart; Zhuang Liu; Weibo Cai

Noninvasive dynamic positron emission tomography (PET) imaging was used to investigate the balance between renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)-modified porphyrin nanoparticles (TCPP-PEG) with various molecular weights. TCPP-PEG10K nanoparticles with clearance behavior would be a good candidate for PET image-guided photodynamic therapy.


Journal of Controlled Release | 2016

DNA nanomaterials for preclinical imaging and drug delivery

Dawei Jiang; Christopher G. England; Weibo Cai

Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future.


Bioorganic & Medicinal Chemistry | 2012

Radiolabeling of RGD peptide and preliminary biological evaluation in mice bearing U87MG tumors.

Jianbo Li; Lingli Shi; Lina Jia; Dawei Jiang; Wei Zhou; Weiqing Hu; Yujin Qi; Lan Zhang

2-[(18)F]Fluoroethyl azide ([(18)F]FEA) and terminal alkynyl modified propioloyl RGDfK were selected in this study. [(18)F]FEA was prepared by nucleophilic radiofluorination of 2-azidoethyl 4-toluenesulfonate with radiochemical yield of 71 ± 4% (n = 5, decay-corrected). We assessed the various conditions of the CuAAC reaction between [(18)F]FEA and propioloyl RGDfK, which included peptide concentration, reaction time, temperature and catalyst dosage. The (18)F-labeled-RGD peptide ([(18)F]F-RGDfK) could be obtained in 60 min by a two-step radiochemical synthesis route, with total radiochemical yield of 60 ± 2% (n = 3, decay-corrected) through click chemistry. [(18)F]F-RGDfK showed high stability in phosphate buffered saline and new-born calf serum. Micro-PET imaging at 1 h post injection of [(18)F]F-RGDfK showed medium concentration of radioactivity in tumors while much decreased concentration in tumors in the blocking group. These results showed that [(18)F]F-RGDfK obtained by click chemistry maintained the affinity and specificity of the RGDfK peptide to integrin α(v)β(3). This study provided useful information for peptide radiofluorination by using click chemistry.


European Journal of Nuclear Medicine and Molecular Imaging | 2018

89 Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer

Christopher G. England; Dawei Jiang; Emily B. Ehlerding; Brian T. Rekoske; Paul A. Ellison; Reinier Hernandez; Todd E. Barnhart; Douglas G. McNeel; Peng Huang; Weibo Cai

PurposeNivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes.Methods89Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 (89Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations.ResultsThe tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of 89Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis.ConclusionsThese data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification.


ACS Nano | 2017

Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer

Sida Shen; Dawei Jiang; Liang Cheng; Yu Chao; Kaiqi Nie; Ziliang Dong; Christopher J. Kutyreff; Jonathan W. Engle; Peng Huang; Weibo Cai; Zhuang Liu

Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (WVI) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64Cu2+, enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.


ACS Nano | 2017

Intrabilayer 64Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes

Dandan Luo; Shreya Goel; Hai-Jun Liu; Kevin A. Carter; Dawei Jiang; Jumin Geng; Christopher J. Kutyreff; Jonathan W. Engle; Wei-Chiao Huang; Shuai Shao; Chao Fang; Weibo Cai; Jonathan F. Lovell

Doxorubicin (Dox)-loaded stealth liposomes (similar to those in clinical use) can incorporate small amounts of porphyrin-phospholipid (PoP) to enable chemophototherapy (CPT). PoP is also an intrinsic and intrabilayer 64Cu chelator, although how radiolabeling impacts drug delivery has not yet been assessed. Here, we show that 64Cu can radiolabel the stable bilayer of preformed Dox-loaded PoP liposomes with inclusion of 1% ethanol without inducing drug leakage. Dox-PoP liposomes labeled with intrabilayer copper behaved nearly identically to unlabeled ones in vitro and in vivo with respect to physical parameters, pharmacokinetics, and CPT efficacy. Positron emission tomography and near-infrared fluorescence imaging visualized orthotopic mammary tumors in mice with passive liposome accumulation following administration. A single CPT treatment with 665 nm light (200 J/cm2) strongly inhibited primary tumor growth. Liposomes accumulated in lung metastases, based on NIR imaging. These results establish the feasibility of CPT interventions guided by intrinsic multimodal imaging of Dox-loaded stealth PoP liposomes.


Biomaterials | 2018

Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging

Dalong Ni; Dawei Jiang; Hyung-Jun Im; Hector F. Valdovinos; Bo Yu; Shreya Goel; Todd E. Barnhart; Peng Huang; Weibo Cai

Radiolabeled nanoprobes for positron emission tomography (PET) imaging has received special attention over the past decade, allowing for sensitive, non-invasive, and quantitative detection of different diseases. The rapidly renal clearable nanomaterials normally suffer from a low accumulation in the tumor through the enhanced permeability and retention (EPR) effect due to the rapidly reduced concentration in the blood circulation after renal clearance. It is highly important to design radiolabeled nanomaterials which can meet the balance between the rapid renal clearance and strong EPR effect within a suitable timescale. Herein, renal clearable polyoxometalate (POM) clusters of ultra-small size (∼1 nm in diameter) were readily radiolabeled with the oxophilic 89Zr to obtain 89Zr-POM clusters, which may allow for efficient staging of kidney dysfunction in a murine model of unilateral ureteral obstruction (UUO). Furthermore, the as-synthesized clusters can accumulate in the tumor through EPR effect and self-assemble into larger nanostructures in the acidic tumor microenvironment for enhanced tumor accumulation, offering an excellent balance between renal clearance and EPR effect.


Accounts of Chemical Research | 2018

Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications

Dalong Ni; Dawei Jiang; Emily B. Ehlerding; Peng Huang; Weibo Cai

As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (64Cu, 89Zr, 18F, 68Ga, 124I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO2), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO2, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.

Collaboration


Dive into the Dawei Jiang's collaboration.

Top Co-Authors

Avatar

Weibo Cai

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Todd E. Barnhart

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Emily B. Ehlerding

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christopher G. England

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hector F. Valdovinos

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jonathan W. Engle

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shreya Goel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bo Yu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dalong Ni

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge