Dawei Yao
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawei Yao.
Journal of Dairy Science | 2013
Huaiping Shi; Jun Luo; Dawei Yao; Jiangjiang Zhu; Huifen Xu; Hengbo Shi; Juan J. Loor
In rodents, peroxisome proliferator-activated receptor-γ (PPARG) plays a crucial role in fatty acid (FA) metabolism through regulation of gene expression, including stearoyl-coenzyme A desaturase (SCD), which is the rate-limiting enzyme for the biosynthesis of monounsaturated FA. However, whether or how PPARG regulates the activity of mammary SCD in ruminants is unknown. This study explored the potential role of PPARG isoforms in regulating SCD mRNA expression in lactating goat mammary epithelial cells (GMEC). Using quantitative real-time PCR, we observed a positive correlation between PPARG and SCD expression in the goat mammary gland at peak lactation. Overexpression of both PPARG1 and PPARG2 in GMEC increased markedly the expression of SCD, the concentration of 16:1 and 18:1, and the desaturation indices of 16:1 and 18:1. The PPARG ligand rosiglitazone further increased SCD expression and desaturation indices in GMEC, overexpressing PPARG1 and PPARG2. Incubation with rosiglitazone alone increased the expression of SCD, but did not alter the concentration of 16- to 18-carbon FA or their desaturation indices. The results provide evidence that PPARG regulates the expression and activity of SCD in GMEC. As such, PPARG may contribute to regulation of SCD and monounsaturated FA synthesis during lactation.
Journal of Cellular Physiology | 2017
Hui Wang; Huaiping Shi; Jun Luo; Yongqing Yi; Dawei Yao; Xueying Zhang; Gongzhen Ma; Juan J. Loor
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression at the post‐transcriptional level to cause translational repression or degradation of targets. The profiles of miRNAs across stages of lactation in small ruminant species such as dairy goats is unknown. A small RNA library was constructed using tissue samples from mammary gland of Saanen dairy goats harvested at mid‐lactation followed by sequencing via Solexa technology. A total of 796 conserved miRNAs, 263 new miRNAs, and 821 pre‐miRNAs were uncovered. After comparative analyses of our sequence data with published mammary gland transcriptome data across different stages of lactation, a total of 37 miRNAs (including miR‐145) had significant differences in expression over the lactation cycle. Further studies revealed that miR‐145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC). Compared with nonlactating mammary tissue, lactating mammary gland had a marked increase in expression of miR‐145. Overexpression of miR‐145 increased transcription of genes associated with milk fat synthesis resulting in greater fat droplet formation, triacylglycerol accumulation, and proportion of unsaturated fatty acids. In contrast, silencing of miR‐145 impaired fatty acid synthesis. Inhibition of miR‐145 increased methylation levels of fatty acid synthase (FASN), stearoyl‐CoA desaturase 1 (SCD1), peroxisome proliferator‐activated receptor gamma (PPARG), and sterol regulatory element binding transcription factor 1 (SREBF1). Luciferase reporter assays confirmed that insulin induced gene 1 (INSIG1) is a direct target of miR‐145. These findings underscore the need for further studies to evaluate the potential for targeting miR‐145 for improving beneficial milk components in ruminant milk. J. Cell. Physiol. 232: 1030–1040, 2017.
Journal of Dairy Science | 2014
Huaiping Shi; W.S. Zhao; Jun Luo; Dawei Yao; Yuting Sun; Jun Li; Hengbo Shi; Juan J. Loor
In nonruminants, the alternative splicing of peroxisome proliferator-activated receptor γ (PPARG) generates PPARG1 and PPARG2 isoforms. Although transcriptional control differences between isoforms have been reported in human adipose tissue, their roles in ruminant mammary cells are not well known. To assess which of these isoforms is more closely associated with the regulation of mammary lipogenic pathways, their tissue distribution was analyzed and the expression of key genes regulating lipogenic gene networks was measured after overexpression of the 2 isoforms in goat mammary epithelial cells (GMEC). The expression of PPARG2 was markedly greater in adipose tissue, whereas PPARG1 is the main isoform in goat mammary tissue (ratio of PPARG1:PPARG2 was close to 37:1). As was reported in previous work, PPARG1 upregulated the transcription regulators SREBF1 and PPARG and the lipogenic genes FASN, ACACA, and SCD. Along with a tendency for greater expression of AGPAT6, DGAT1, and PLIN2, these data suggest that PPARG1 is the isoform controlling lipogenesis in mammary cells. Addition of the PPARG ligand rosiglitazone (ROSI) to GMEC overexpressing both isoforms upregulated the expression of LPL and CD36, which help control uptake of long-chain fatty acids into mammary cells. Other responses to ROSI addition to GMEC overexpressing PPARG1 and PPARG2 included upregulation of AGPAT6, DGAT1, INSIG1, SREBF1, and NR1H3. Although the data suggest that both PPARG1 and PPARG2 could affect mammary lipogenesis via control of gene expression when stimulated (e.g., by ROSI), the fact that PPARG1 is more abundant in mammary tissue and that its overexpression alone upregulated key lipogenic gene networks suggest that it is the more important isoform in goat mammary cells.
RNA Biology | 2016
Hui Wang; Jun Luo; Tianying Zhang; H.B. Tian; Yue Ma; Huifen Xu; Dawei Yao; Juan J. Loor
ABSTRACT The microRNA-26 (miR-26) family is known to control adipogenesis in non-ruminants. The genomic loci of miR-26a and miR-26b have been localized in the introns of genes encoding for the proteins of the C-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family. Insulin-induced gene 1 (INSIG1) encodes a protein with a key role in the regulation of lipogenesis in rodent liver. In the present study, we investigated the synergistic function of the miR-26 family and their host genes in goat mammary epithelial cells (GMEC). Downregulation of miR-26a/b and their host genes in GMEC decreased the expression of genes relate to fatty acid synthesis (PPARG, LXRA, SREBF1, FASN, ACACA, GPAM, LPIN1, DGAT1 and SCD1), triacylglycerol accumulation and unsaturated fatty acid synthesis. Luciferase reporter assays confirmed INSIG1 as a direct target of miR-26a/b. Furthermore, inhibition of the CTDSP family also downregulated the expression of INSIG1. Taken together, our findings highlight a functional association of miR-26a/b, their host genes and INSIG1, and provide new insights into the regulatory network controlling milk fat synthesis in GMEC. The data indicate that targeting this network via nutrition might be important for regulating milk fat synthesis in ruminants.
Journal of Cellular Physiology | 2018
Huifen Xu; Jun Luo; Gongzhen Ma; Xueying Zhang; Dawei Yao; Ming Li; Juan J. Loor
Sterol regulatory element binding protein 1 (SREBP‐1) is well‐known as the master regulator of lipogenesis in rodents. Acyl‐CoA synthetase short‐chain family member 2 (ACSS2) plays a key role in lipogenesis by synthesizing acetyl‐CoA from acetate for lipogenesis. ATP citrate lyase (ACLY) catalyzes the conversion of citrate and coenzyme A to acetyl‐CoA, hence, it is also important for lipogenesis. Although ACSS2 function in cancer cells has been elucidated, its essentiality in ruminant mammary lipogenesis is unknown. Furthermore, ACSS2 gene promoter and its regulatory mechanisms have not known. Expression of ACSS2 was high in lipid synthesizing tissues, and its expression increased during lactation compared with non‐lactating period. Simultaneous knockdown of both ACSS2 and ACLY by siRNA in primary goat mammary epithelial cells decreased (p < 0.05) the mRNA abundance of genes associated with de novo fatty acid synthesis (FASN, ACACA, SCD1) and triacylglycerol (TAG) synthesis (DGAT1, DGAT2, GPAM, and AGPAT6). Genes responsible for lipid droplet formation and secretion (PLIN2 and PLIN3) and fatty acid oxidation (ATGL, HSL, ACOX, and CPT1A) all decreased (p < 0.05) after ACSS2 and ACLY knockdown. Total cellular TAG content and lipid droplet formation also decreased. Use of a luciferase reporter assay revealed a direct regulation of ACSS2 by SREBP‐1. Furthermore, SREBP‐1 interacted with an SRE (SREBP response element) spanning at −475 to −483 bp on the ACSS2 promoter. Taken together, our results revealed a novel pathway that SREBP‐1 may regulate fatty acid and TAG synthesis by regulating the expression of ACSS2.
PLOS ONE | 2015
Zhi Chen; Jun Luo; Liuan Ma; Hui Wang; Wenting Cao; HuiFei Xu; Jiangjiang Zhu; Yuting Sun; Jun Li; Dawei Yao; Kang Kang; Deming Gou
Fat metabolism is a complicated process regulated by a series of factors. microRNAs (miRNAs) are a class of negative regulator of proteins and play crucial roles in many biological processes; including fat metabolism. Although there have been some researches indicating that miRNAs could influence the milk fat metabolism through targeting some factors, little is known about the effect of miRNAs on goat milk fat metabolism. Here we utilized an improved miRNA detection assay, S-Poly-(T), to profile the expression of miRNAs in the goat mammary gland in different periods, and found that miR-130b was abundantly and differentially expressed in goat mammary gland. Additionally, overexpressing miR-130b impaired adipogenesis while inhibiting miR-130b enhanced adipogenesis in goat mammary epithelial cells. Utilizing 3’-UTR assay and Western Blot analusis, the protein peroxisome proliferator-activated receptor coactivator-1α (PGC1α), a major regulator of fat metabolism, was demonstrated to be a potential target of miR-130b. Interestingly, miR-130b potently repressed PGC1α expression by targeting both the PGC1α mRNA coding and 3’ untranslated regions. These findings have some insight of miR-130b in mediating adipocyte differentiation by repressing PGC1α expression and this contributes to further understanding about the functional significance of miRNAs in milk fat synthesis.
Journal of Cellular Physiology | 2017
Dawei Yao; Jun Luo; Qiuya He; H.B. Shi; Jun Li; Hui Wang; Huifen Xu; Zhi Chen; Yongqing Yi; Juan J. Loor
Stearoyl‐CoA desaturase 1 (SCD1) is a key enzyme for the synthesis of the monounsaturated fatty acids (MUFA) palmitoleic acid and oleic acid. In non‐ruminant species, SCD1 expression is known to be tightly regulated by a variety of transcription factors. Although the role of SCD1 and the transcriptional regulatory mechanism by SREBP‐1 and PPARs in other species is clear, changes in lipid metabolism related to SCD1 and via the regulation of SREBP‐1 or PPARG1 in ruminant mammary tissue remain largely unknown. Here, we demonstrated that SCD1 expression in goat mammary tissue is higher during lactation than the dry period. Overexpression of SCD1 increased the intracellular MUFA content and lipid accumulation, whereas SCD1 silencing resulted in a significant decrease in oleic acid concentration and triacylglycerol (TAG) accumulation. The overexpression of SREBF1 in goat mammary epithelial cells (GMEC) enhanced SCD1 expression and its promoter activity, but that effect was abolished when SREBF1 was silenced. Furthermore, deletion of sterol regulatory element (SRE) and the nuclear factor (NF‐Y)‐binding sites within a −1713 to +65‐base pair region of the SCD1 promoter completely abolished SREBP‐1‐induced SCD1 transcription. Otherwise, PPARG1 overexpression also stimulated the expression of SCD1 and its transcriptional activity directly via a PPAR response element (PPRE) in the SCD1 promoter. Together, these results indicate that SCD1 could markedly affect the fatty acid composition and rate of TAG synthesis through direct regulation via SREBP‐1 and PPARG1, hence, underscoring an important role of the enzyme and this transcription regulator in controlling mammary gland lipid synthesis in the goat. J. Cell. Physiol. 232: 635–649, 2017.
Journal of Dairy Science | 2016
Dawei Yao; Jun Luo; Qiuya He; M. Wu; H.B. Shi; Hui Wang; M. Wang; Huifen Xu; Juan J. Loor
In nonruminants, thyroid hormone responsive (THRSP) is a crucial protein for cellular de novo lipogenesis. However, the role of THRSP in regulating the synthesis of milk fatty acid composition in goat mammary gland remains unknown. In the present study, we compared gene expression of THRSP among different goat tissues. Results revealed that THRSP had the highest expression in subcutaneous fat, and expression was higher during lactation compared with the dry period. Overexpression of THRSP upregulated the expression of fatty acid synthase (FASN), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acyltransferase 2 (DGAT2), and glycerol-3-phosphate acyltransferase (GPAM) in goat mammary epithelial cells. In contrast, overexpression of THRSP led to downregulation of thrombospondin receptor (CD36) and had no effect on the expression of acetyl-coenzyme A carboxylase α (ACACA) and sterol regulatory element binding transcription factor1 (SREBF1). In addition, overexpressing THRSP in vitro resulted in a significant increase in triacylglycerol (TAG) concentration and the concentrations of C12:0 and C14:0. Taken together, these results highlight an important role of THRSP in regulating lipogenesis in goat mammary epithelial cells.
Comparative Biochemistry and Physiology B | 2015
Jun Li; Jun Luo; Jiangjiang Zhu; Yuting Sun; Dawei Yao; Hengbo Shi; Wei Wang
Fatty acid synthase (FASN) is a central enzyme of milk fat synthesis in the ruminant mammary gland. However, the mechanisms regulating goat FASN transcription remain elusive. The objective of this study was to investigate the mechanisms by which liver X receptor α (LXRα) regulates the FASN promoter in goat mammary epithelial cells (GMECs). In this study, T0901317 (T09), an agonist for LXRα, significantly enhanced the mRNA expression and promoter activity of FASN. Cloning of the dairy goat FASN promoter revealed the presence of one LXR response element (LXRE) and two sterol regulatory elements (SREs). Deletion or mutation of the FASN promoter LXRE reduced, but did not eliminate the transcriptional response of FASN to T09. While the LXRE and the SREs were both disrupted, basal transcription was severely reduced and there was no response to T09 treatment. This suggested that a complete response required one LXRE and two SREs. Knockdown of LXRα by siRNA did not alter the basal or T09-induced transcriptional activity of FASN. However, when sterol regulatory binding protein 1 (SREBP1) was knocked down, T09 significantly increased FASN transcription by wild-type GMECs, but had no effect on cells with LXRE-mutant promoters. The results suggested that LXR regulates FASN promoter activity through direct interaction with the LXRE as well as through increasing SREBP1 abundance. The present study provides insight into the transcriptional regulatory mechanisms controlling de novo fatty acid synthesis in GMECs.
Journal of Dairy Science | 2016
Dawei Yao; Jun Luo; Qiuya He; Huifen Xu; Jun Li; H.B. Shi; Hui Wang; Zhi Chen; Juan J. Loor
Stearoyl-coenzyme A desaturase 1 (SCD1) is a pivotal enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). It is tightly regulated by transcription factors that control lipogenesis. In nonruminants, liver X receptor α (LXRα) is a nuclear receptor and transcription factor that acts as a key sensor of cholesterol and lipid homeostasis. However, the mechanism whereby LXRα regulates the expression and transcriptional activity of SCD1 in ruminant mammary cells remains unknown. In this study with goat mammary epithelial cells (GMEC), the LXRα agonist T 4506585 (T09) markedly enhanced the mRNA expression of SCD1 and sterol regulatory element binding factor 1 (SREBF1). The concentrations of C16:1 and C18:1 and their desaturation indices also were increased by LXRα activation. However, knockdown of LXRα did not alter the mRNA expression of SCD1. Although SCD1 was repressed by SREBF1 knockdown, T09 significantly increased SCD1 expression. Further analysis revealed that the SCD1 promoter activity was activated by LXRα overexpression. The goat SCD1 promoter contains 2 LXR response elements (LXRE), 1 sterol response element (SRE), and 1 nuclear factor Y (NF-Y) binding site. Site-directed mutagenesis of LXRE1, LXRE2, or SRE alone did not eliminate the upregulation of SCD1 when LXRα was overexpressed. In contrast, when NF-Y alone or in combination with SRE was mutated simultaneously, the basal transcriptional activity of the SCD1 promoter was markedly decreased and did not respond to LXRα overexpression. Furthermore, when SREBF1 was knocked down, overexpression of LXRα did not affect the promoter activity of SCD1. Together, these data suggest that LXRα regulates the expression of SCD1 through increasing SREBP-1 abundance to promote interaction with SRE and NF-Y binding sites. The present study provides evidence that LXRα is involved in the synthesis of MUFA in the goat mammary gland through an indirect mechanism.