Dawei Zou
Capital Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawei Zou.
Cell Biochemistry and Biophysics | 2013
Jinyang Wang; Yanbin Gao; Mingfei Ma; Minzhou Li; Dawei Zou; Jinkui Yang; Zhiyao Zhu; Xuan Zhao
MicroRNAs (miRs) play important roles in initiation and progression of many pathologic processes. However, the roles of miRs in diabetic nephropathy remain unclear. This study was to determine whether miR-21 was involved in diabetic nephropathy and to explore the relationship between miR-21 and MMP9/TIMP1 expression in diabetic nephropathy. In situ hybridization studies showed that miR-21 was primarily localized and distributed in cortical glomerular and renal tubular cells in diabetic kk-ay kidney. Real-time quantitative RT-PCR demonstrated that the expression of miR-21 was significantly increased in kk-ay mice, compared with control C57BL mice. Interestingly, miR-21 expression positively correlated with urine albumin creatine ratio (ACR), TIMP1, collagen IV (ColIV), and fibronectin (FN); while negatively correlated with creatine clearance ratio (Ccr) and MMP-9 protein. Importantly, antagomir-21 not only ameliorated Ccr and ACR but also decreased TIMP1, ColIV, and FN proteins. In conclusion, our data demonstrate that miR-21 contributes to renal fibrosis by mediating MMP9/TIMP1 and that inhibition of miR-21 may be a novel target for diabetic nephropathy.
Molecular and Cellular Endocrinology | 2014
Jinyang Wang; Yanbin Gao; Na Zhang; Dawei Zou; Peng Wang; Zhiyao Zhu; Jiaoyang Li; Shengnan Zhou; Shao-Cheng Wang; Ying-Ying Wang; Jin-Kui Yang
Epithelial-to-mesenchymal transition (EMT) plays an important role in renal interstitial fibrosis (RIF) with diabetic nephropathy (DN). Smad7 (a inhibitory smad), a downstream signaling molecules of TGF-β1, represses the EMT. The physiological function of miR-21 is closely linked to EMT and RIF. However, it remained unclear whether miR-21 over-expression affected TGF-β1-induced EMT by regulating smad7 in DN. In this study, real-time RT-PCR, cell transfection, luciferase reporter gene assays, western blot and confocal microscope were used, respectively. Here, we found that miR-21 expression was upregulated by TGF-β1 in time- and concentration -dependent manner. Moreover, miR-21 over-expression enhanced TGF-β1-induced EMT(upregulation of a-SMA and downregulation of E-cadherin) by directly down-regulating smad7/p-smad7 and indirectly up-regulating smad3/p-smad3, accompanied by the decrease of Ccr and the increase of col-IV, FN, the content of collagen fibers, RTBM, RTIAW and ACR. Meantime, the siRNA experiment showed that smad7 can directly regulate a-SMA and E-cadherin expression. More importantly, miR-21 inhibitor can not only inhibit EMT and fibrosis but also ameliorate renal structure and function. In conclusion, our results demonstrated that miR-21 overexpression can contribute to TGF-β1-induced EMT by inhibiting target smad7, and that targeting miR-21 may be a better alternative to directly suppress TGF-β1-mediated fibrosis in DN.
American Journal of Physiology-renal Physiology | 2014
Jinyang Wang; Yanbin Gao; Na Zhang; Dawei Zou; Liping Xu; Zhiyao Zhu; Jiaoyang Li; Shengnan Zhou; Fangqiang Cui; Xiang-jun Zeng; Jianguo Geng; Jin-Kui Yang
Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-β1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.
Evidence-based Complementary and Alternative Medicine | 2013
Dawei Zou; Yanbin Gao; Zhiyao Zhu; Hui Zhou; Taojing Zhang; Bu-Man Li; Jinyang Wang; Minzhou Li; Mingfei Ma; Na Zhang
Diabetic peripheral neuropathy (DPN) is a common microvascular complication of diabetes associated with high disability rate and low quality of life. Tang-Luo-Ning (TLN) is an effective traditional Chinese medicine for the treatment of DPN. To illustrate the underlying neural protection mechanisms of TLN, the effect of TLN on electrophysiology and sciatic nerve morphology was investigated in a model of streptozotocin-induced DPN, as well as the underlying mechanism. Sciatic motor nerve conduction velocity and digital sensory nerve conduction velocity were reduced in DPN and were significantly improved by TLN or α-lipoic acid at 10 and 20 weeks after streptozotocin injection. It was demonstrated that TLN intervention for 20 weeks significantly alleviated pathological injury as well as increased the phosphorylation of ErbB2, Erk, Bad (Ser112), and the mRNA expression of neuregulin 1 (Nrg1), GRB2-associated binding protein 1 (Gab1), and mammalian target of rapamycin (Mtor) in injured sciatic nerve. These novel therapeutic properties of TLN to promote Schwann cell survival may offer a promising alternative medicine for the patients to delay the progression of DPN. The underlying mechanism may be that TLN exerts neural protection effect after sciatic nerve injury through Nrg1/ErbB2→Erk/Bad Schwann cell survival signaling pathway.
Scientific Reports | 2017
Xiaoming Wu; Yanbin Gao; Liping Xu; Wanyu Dang; Huimin Yan; Dawei Zou; Zhiyao Zhu; Liangtao Luo; Nianxiu Tian; Xiaolei Wang; Yu Tong; Zheji Han
New data indicate that abnormal glomerular endothelial cell (GEC)-podocyte crosstalk plays a critical role in diabetic nephropathy (DN). The aim of our study is to investigate the role of exosomes from high glucose (HG)-treated GECs in the epithelial-mesenchymal transition (EMT) and dysfunction of podocytes. In this study, exosomes were extracted from GEC culture supernatants and podocytes were incubated with the GEC-derived exosomes. Here, we demonstrate that HG induces the endothelial-mesenchymal transition (EndoMT) of GECs and HG-treated cells undergoing the EndoMT secrete more exosomes than normal glucose (NG)-treated GECs. We show that GEC-derived exosomes can be internalized by podocytes and exosomes from HG-treated cells undergoing an EndoMT-like process can trigger the podocyte EMT and barrier dysfunction. Our study reveals that TGF-β1 mRNA is enriched in exosomes from HG-treated GECs and probably mediates the EMT and dysfunction of podocytes. In addition, our experimental results illustrate that canonical Wnt/β-catenin signaling is involved in the exosome-induced podocyte EMT. Our findings suggest the importance of paracrine communication via exosomes between cells undergoing the EndoMT and podocytes for renal fibrosis in DN. Thus, protecting GECs from the EndoMT and inhibiting TGF-β1-containing exosomes release from GECs is necessary to manage renal fibrosis in DN.
Evidence-based Complementary and Alternative Medicine | 2014
Na Zhang; Yanbin Gao; Dawei Zou; Jinyang Wang; Jiaoyang Li; Shengnan Zhou; Zhiyao Zhu; Xuan Zhao; Liping Xu; Haiyan Zhang
Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.
The American Journal of Chinese Medicine | 2017
Xiaoming Wu; Yanbin Gao; Liping Xu; Dawei Zou; Zhiyao Zhu; Xiaolei Wang; Weijie Yao; Liangtao Luo; Yu Tong; Nianxiu Tian; Zheji Han; Wanyu Dang
Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.
Drug Design Development and Therapy | 2018
Nianxiu Tian; Yanbin Gao; Xiaolei Wang; Xiaoming Wu; Dawei Zou; Zhiyao Zhu; Zheji Han; Tao Wang; Yimin Shi
Background Endoplasmic reticulum stress is associated with podocyte apoptosis in the pathogenesis of diabetic nephropathy (DN). A previous study has demonstrated that emodin has a protective effect in the kidney by suppressing proliferation of mesangial cells and inhibiting the renal tubular epithelial-to-mesenchymal transition. However, the effects of emodin on the podocyte apoptosis in DN and its mechanisms are unknown. Aim This study aimed to explore the effect of emodin on DN model KK-Ay mice and high glucose induced podocytes apoptosis via the PERK–eIF2α pathway. Methods KK-Ay mice model of DN were treated with emodin at dose of 40 and 80 mg/kg/day for 8 weeks. Urine albumin, serum creatinine, blood urea nitrogen levels and the renal histopathology in mice were performed. In vitro, conditionally immortalized mouse podocytes exposed to HG (30mM) were incubated with emodin. Cell viability was measured by CCK-8 assay. Additionally, we performed RNA interference and measured the apoptosis in cultured podocytes treated with emodin. Immunohistochemistry, immunofluorescence, western blot, and real-time PCR were used to detect gene and protein expression both in vivo and in vitro. Results The results showed that emodin treatment ameliorated urine albumin, serum creatinine, and blood urea nitrogen of DN mice. The pathological damage of kidney tissue was also improved after treatment with emodin. Moreover, emodin increased nephrin expression. Podocytes apoptosis and endoplasmic reticulum stress markers (GRP78) were significantly reduced upon emodin treatment. Furthermore, emodin treatment decreased the expression of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (P-PERK), phosphorylated P-eIF2α, ATF4, and CHOP. In vitro, emodin treatment was further found to decrease the GRP78 level induced by high glucose or tunicamycin (TM). Besides, emodin and PERK knockdown inhibited the apoptosis of podocytes cultured in high glucose by counteracting the upregulation of phosphorylated PERK, phosphorylated eIF2α, ATF4, and CHOP. Conclusion Overall, the findings indicate that emodin mitigates podocytes apoptosis by inhibiting the PERK-eIF2α signaling pathway in vivo and in vitro, and, therefore, exerts a protective action on podocytes in DN.
Evidence-based Complementary and Alternative Medicine | 2015
Fangqiang Cui; Dawei Zou; Yanbin Gao; Na Zhang; Jinyang Wang; Liping Xu; Jianguo Geng; Jiaoyang Li; Shengnan Zhou; Xinyao Wang
Podocyte injury is an important mechanism of diabetic nephropathy (DN). Accumulating evidence suggests that nephrin expression is decreased in podocyte in DN. Moreover, it has been demonstrated that tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN. However, the effect of TXL on podocyte injury in DN and its molecular mechanism is unclear. In order to explore the effect of TXL on podocyte injury and its molecular mechanism in DN, our in vivo and in vitro studies were performed. Our results showed that TXL increased nephrin expression in diabetic rats and in high glucose cultured podocyte. Meanwhile, TXL decreased ICN1 (the intracellular domain of notch), HES1, and snail expression in podocyte in vivo and in vitro. More importantly, we found that TXL protected podocyte from injury in DN. The results demonstrated that TXL inhibited the activation of notch1/snail pathway and increased nephrin expression, which may be a mechanism of protecting effect on podocyte injury in DN.
Drug Design Development and Therapy | 2018
Xiaolei Wang; Yanbin Gao; Nianxiu Tian; Dawei Zou; Yimin Shi; Nan Zhang
Background Podocyte dedifferentiation and mesangial cell (MC) activation play an important role in many glomerular diseases associated with fibrosis. MicroRNA-21 (miR-21) is closely linked to renal fibrosis, but it is unknown whether and how miR-21 promotes podocyte dedifferentiation and MC activation and whether astragaloside IV (AS-IV) improves renal function and fibrosis through the regulation of miR-21. Materials and methods Cultured MCs, primary mouse podocytes, and diabetic KK-Ay mice were treated with AS-IV. Cell transfection, Western blot, real-time PCR, immunofluorescence assay, immunohistochemical assay, and electronic microscopy were used to detect the markers of podocyte dedifferentiation and MC activation and to observe the renal morphology. Results Our data showed that miR-21 expression was increased and that AS-IV decreased miR-21 levels in cells, serum, and kidney. Overexpressed miR-21 promoted podocyte dedifferentiation and MC activation, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of miR-21 activated the β-catenin pathway and the transforming growth factor (TGF)-β1/Smads pathway in the process of podocyte dedifferentiation and MC activation, which was abolished by AS-IV treatment. In addition, both the Wnt/β-catenin pathway inhibitor XAV-939 and the TGF-β1/Smads pathway inhibitor SB431542 reversed the effect of AS-IV. Furthermore, AS-IV improved renal function and fibrosis in diabetic KK-Ay mice. Conclusion Our results indicated that AS-IV ameliorates renal function and renal fibrosis by inhibiting miR-21 overexpression-induced podocyte dedifferentiation and MC activation in diabetic kidney disease. These findings pave way for future studies investigating AS-IV as a potential therapeutic agent in the management of glomerular diseases.