Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn A. Delfín is active.

Publication


Featured researches published by Dawn A. Delfín.


Journal of Medicinal Chemistry | 2010

Antitrypanosomal Activity of 1,2-Dihydroquinolin-6-ols and Their Ester Derivatives

Jean Fotie; Marcel Kaiser; Dawn A. Delfín; Joshua Manley; Carolyn S. Reid; Jean-Marc Paris; Tanja Wenzler; Louis Maes; Kiran V. Mahasenan; Chenglong Li; Karl A. Werbovetz

The current chemotherapy for second stage human African trypanosomiasis is unsatisfactory. A synthetic optimization study based on the lead antitrypanosomal compound 1,2-dihydro-2,2,4-trimethylquinolin-6-yl 3,5-dimethoxybenzoate (TDR20364, 1a) was undertaken in an attempt to discover new trypanocides with potent in vivo activity. While 6-ether derivatives were less active than the lead compound, several N1-substituted derivatives displayed nanomolar IC(50) values against T. b. rhodesiense STIB900 in vitro, with selectivity indexes up to >18000. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate (10a) displayed an IC(50) value of 0.014 microM against these parasites and a selectivity index of 1700. Intraperitoneal administration of 10a at 50 (mg/kg)/day for 4 days caused a promising prolongation of lifespan in T. b. brucei STIB795-infected mice (>14 days vs 7.75 days for untreated controls). Reactive oxygen species were produced when T. b. brucei were exposed to 10a in vitro, implicating oxidative stress in the trypanocidal mode of action of these 1,2-dihydroquinoline derivatives.


Bioorganic & Medicinal Chemistry | 2009

Redox-active dinitrodiphenylthioethers against Leishmania: Synthesis, structure–activity relationships and mechanism of action studies

Dawn A. Delfín; Rachel E. Morgan; Xiaohua Zhu; Karl A. Werbovetz

BTB 06237 (2-[(2,4-dichloro-5-methylphenyl)sulfanyl]-1,3-dinitro-5-(trifluoromethyl) benzene), a compound previously identified through QSAR pharmacophore development and a virtual screen of the Maybridge database, possesses potent and selective activity against Leishmania parasites. In the present study, several analogs of BTB 06237 were synthesized and analyzed for activity against Leishmania axenic amastigotes, their ability to reduce the level of parasitemia in peritoneal macrophages, and their ability to generate reactive oxygen species (ROS) in L. donovani promastigotes. It was found that an aromatic ring must be present in the position occupied by the 2,4-dichloro-5-methylphenyl group in the lead compound, but changing the functional groups generally has little effect on the antileishmanial potency. Alterations to the 1,3-dinitro-5-(trifluoromethyl)benzene ring have more influence on antiparasitic activity with two aromatic nitro groups and a third electron-withdrawing group being required. This structural requirement corresponds with redox potential, the ability to generate ROS in the parasites, and dissipation of the mitochondrial membrane potential. Finally, we used this collection of data to design a new antileishmanial compound with strong activity in vitro and improved properties as an antileishmanial candidate.


Circulation-heart Failure | 2009

Impairment of Diastolic Function by Lack of Frequency-Dependent Myofilament Desensitizationin Rabbit Right Ventricular Hypertrophy

Kenneth D. Varian; Anusak Kijtawornrat; Subash C. Gupta; Carlos A.A. Torres; Michelle M. Monasky; Nitisha Hiranandani; Dawn A. Delfín; Jill A. Rafael-Fortney; Muthu Periasamy; Robert L. Hamlin; Paul M.L. Janssen

Background—Ventricular hypertrophy is a physiological response to pressure overload that, if left untreated, can ultimately result in ventricular dysfunction, including diastolic dysfunction. The aim of this study was to test the hypothesis that frequency-dependent myofilament desensitization, a physiological response of healthy myocardium, is altered in hypertrophied myocardium. Methods and Results—New Zealand white rabbits underwent a pulmonary artery banding procedure to induce pressure overload. After 10 weeks, the animals were euthanized, hearts removed, and suitable trabeculae harvested from the free wall of the right ventricle. Twitch contractions, calibrated bis-fura-2 calcium transients, and myofilament calcium sensitivity (potassium contractures) were measured at frequencies of 1, 2, 3, and 4 Hz. The force frequency response, relaxation frequency response, and calcium frequency relationships were significantly blunted, and diastolic tension significantly increased with frequency in the pulmonary artery banding rabbits compared with sham-operated animals. Myofilament calcium sensitivity was virtually identical at 1 Hz in the treatment versus sham group (pCa 6.11±0.03 versus 6.11±0.06), but the frequency-dependent desensitization that takes place in the sham group (&Dgr;pCa 0.14±0.06, P<0.05) was not observed in the pulmonary artery banding animals (&Dgr;pCa 0.02±0.05). Analysis of myofilament protein phosphorylation revealed that the normally observed frequency-dependent phosphorylation of troponin-I is lost in pulmonary artery banding rabbits. Conclusions—The frequency-dependent myofilament desensitization is significantly impaired in right ventricular hypertrophy and contributes to the frequency-dependent elevation of diastolic tension in hypertrophy.


Journal of Translational Medicine | 2011

Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

Dawn A. Delfín; Ying Xu; Jennifer M. Peterson; Denis C. Guttridge; Jill A. Rafael-Fortney; Paul M. L. Janssen

BackgroundDuchenne muscular dystrophy (DMD) is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain), targeted at blunting Nuclear Factor κB (NF-κB) signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice.MethodsTo assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko) mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice.ResultsAt baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice.ConclusionsWe conclude that NBD can significantly improve cardiac contractile dysfunction in the dko mouse model of DMD and may thus provide a novel therapeutic treatment for heart failure.


PLOS ONE | 2015

Metabolic Dysfunction and Altered Mitochondrial Dynamics in the Utrophin-Dystrophin Deficient Mouse Model of Duchenne Muscular Dystrophy

Meghna Pant; Danesh H. Sopariwala; Naresh C. Bal; Jeovanna Lowe; Dawn A. Delfín; Jill A. Rafael-Fortney; Muthu Periasamy

The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.


Neuromuscular Disorders | 2012

Cardiomyopathy in the dystrophin/utrophin-deficient mouse model of severe muscular dystrophy is characterized by dysregulation of matrix metalloproteinases

Dawn A. Delfín; Kara E. Zang; Kevin E. Schill; Nikita T. Patel; Paul M. L. Janssen; Subha V. Raman; Jill A. Rafael-Fortney

Cardiomyopathy is a significant component in Duchenne muscular dystrophy. Although mdx mice are deficient in dystrophin, they only develop mild indicators of cardiomyopathy before 1year-of-age, making therapeutic investigations using this model lengthy. In contrast, mdx mice also lacking utrophin (utrn(-/-);mdx) show severely reduced cardiac contractile function and histological indicators of cardiomyopathy by 8-10weeks-of-age. Here we demonstrate that utrn(-/-);mdx mice show a similar pattern of cardiac damage to that in dystrophic patients. Matrix metalloproteinases required for ventricular remodeling during the evolution of heart failure are upregulated in utrn(-/-);mdx mice concurrent with the onset of cardiac pathology by 10weeks-of-age. Matrix metalloproteinase activity is further dysregulated due to reduced levels of endogenous tissue inhibitors and co-localizes with fibroblasts and collagen I-containing scars. utrn(-/-);mdx mice are therefore a very useful model for investigating potential cardiac therapies.


Molecular Therapy | 2012

Sustaining Cardiac Claudin-5 Levels Prevents Functional Hallmarks of Cardiomyopathy in a Muscular Dystrophy Mouse Model

Dawn A. Delfín; Ying Xu; Kevin E. Schill; Tessily A. Mays; Benjamin D. Canan; Kara E. Zang; Jamie A Barnum; Paul M. L. Janssen; Jill A. Rafael-Fortney

Identification of new molecular targets in heart failure could ultimately have a substantial positive impact on both the health and financial aspects of treating the large heart failure population. We originally identified reduced levels of the cell junction protein claudin-5 specifically in heart in the dystrophin/utrophin-deficient (Dmd(mdx);Utrn(-/-)) mouse model of muscular dystrophy and cardiomyopathy, which demonstrates physiological hallmarks of heart failure. We then showed that at least 60% of cardiac explant samples from patients with heart failure resulting from diverse etiologies also have reduced claudin-5 levels. These claudin-5 reductions were independent of changes in other cell junction proteins previously linked to heart failure. The goal of this study was to determine whether sustaining claudin-5 levels is sufficient to prevent the onset of histological and functional indicators of heart failure. Here, we show the proof-of-concept rescue experiment in the Dmd(mdx);Utrn(-/-) model, in which claudin-5 reductions were originally identified. Expression of claudin-5 4 weeks after a single administration of recombinant adeno-associated virus (rAAV) containing a claudin-5 expression cassette prevented the onset of physiological hallmarks of cardiomyopathy and improved histological signs of cardiac damage. This experiment demonstrates that claudin-5 may represent a novel treatment target for prevention of heart failure.


Cardiovascular Pathology | 2015

Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1

Sarah A. Swager; Dawn A. Delfín; Neha Rastogi; Honglan Wang; Benjamin D. Canan; Vadim V. Fedorov; Peter J. Mohler; Ahmet Kilic; Robert S.D. Higgins; Mark T. Ziolo; Paul M. L. Janssen; Jill A. Rafael-Fortney

Claudin-5 is transcriptionally downregulated resulting in dramatically reduced protein levels in human heart failure. Studies in mice have demonstrated that reduced claudin-5 levels occur prior to cardiac damage and far before reduced whole heart function. Therefore, claudin-5 may be a useful early therapeutic target for human heart failure. However, the cell types in which claudin-5 is localized in human heart and from which claudin-5 is reduced in heart failure is not known. The recent identification of claudin-5s interaction with ephrin-B1 in mouse hearts has also not been investigated in non-failing or failing human hearts. In this study we collected human left ventricular mid-myocardium histological samples from 7 non-failing hearts and 16 end-stage failing hearts. Immunoblots demonstrate severe reductions of claudin-5 protein in 14 of 16 failing hearts compared to non-failing controls. Claudin-5 was observed to localize to cardiomyocytes, endothelial cells, and a subset of fibroblasts in non-failing human heart sections. In isolated cardiomyocytes, the transmembrane claudin-5 protein localized in longitudinal striations in lateral membranes. In failing heart, both cardiomyocyte and endothelial claudin-5 localization was severely reduced, but claudin-5 remained in fibroblasts. Absence of claudin-5 staining also correlated with the reduction of the endothelial cell marker CD31. Ephrin-B1 localization, but not protein levels, was altered in failing hearts supporting that claudin-5 is required for ephrin-B1 localization. These data support that loss of claudin-5 in cardiomyocytes and endothelial cells is prevalent in human heart failure. Investigating claudin-5/ephrin-B1 protein complexes and gene regulation may lead to novel therapies.


Bioorganic & Medicinal Chemistry | 2003

Antiprotozoal Activities of Symmetrical Bishydroxamic Acids

Duy H. Hua; Masafumi Tamura; Masahiro Egi; Karl A. Werbovetz; Dawn A. Delfín; Manar M. Salem; Peter K. Chiang

Symmetrical bishydroxamic acids along with their sodium salts containing an alkyl spacer between two aromatic rings were synthesized, and their antiparasitic activities were evaluated. Bishydroxamic acids were conveniently prepared from the alkylation of methyl 4-hydroxybenzoate with various dihalo-alkane, -alkene, and -ether followed by reaction with hydroxylamine. Surprisingly, the bishydroxamic acids and their sodium salts possess strong inhibitory activities against Plasmodium falciparum parasites with IC50 values in the range of 0.26-3.2 microM. Bishydroxamic acid 3 and its sodium salt 12 also inhibit the growth of Leishmania donovani, albeit at higher concentrations. The corresponding biscarboxylic acids and bismethyl esters are inactive. Presumably, the ability of bishydroxamic acids to complex with metallic iron in hemoglobin may be responsible for antimalarial activity of these compounds.


Journal of Applied Physiology | 2011

Lengthening-contractions in isolated myocardium impact force development and worsen cardiac contractile function in the mdx mouse model of muscular dystrophy.

Ying Xu; Dawn A. Delfín; Jill A. Rafael-Fortney; Paul M. L. Janssen

Lengthening-contractions exert eccentric stress on myofibers in normal myocardium. In congestive heart failure caused by a variety of diseases, the impact of lengthening-contractions of myocardium likely becomes more prevalent and severe. The present study introduces a method to investigate the role of stretching imposed by repetitive lengthening-contractions in myocardium under near-physiological conditions. By exerting various stretch-release ramps while the muscle is contracting, consecutive lengthening-contractions and their potential detrimental effect on cardiac function can be studied. We tested our model and hypothesis in age-matched (young and adult) mdx and wild-type mouse right ventricular trabeculae. These linear and ultrathin muscles possess all major cardiac cell types, and their contractile behavior very closely mimics that of the whole myocardium. In the first group of experiments, 10 lengthening-contractions at various magnitudes of stretch were performed in trabeculae from 10-wk-old mdx and wild-type mice. In the second group, 100 lengthening-contractions at various magnitudes were conducted in trabeculae from 10- and 20-wk-old mice. The peak isometric active developed tension (F(dev), in mN/mm(2)) and kinetic parameters time to peak tension (TTP, in ms) and time from peak tension to half-relaxation (RT50, in ms) were measured. Our results indicate lengthening-contractions significantly impact contractile behavior, and that dystrophin-deficient myocardium in mdx mice is significantly more susceptible to these damaging lengthening-contractions. The results indicate that lengthening-contractions in intact myocardium can be used in vitro to study this emerging contributor to cardiomyopathy.

Collaboration


Dive into the Dawn A. Delfín's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Xu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge