Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn Ciulla is active.

Publication


Featured researches published by Dawn Ciulla.


Genome Research | 2011

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

Brian J. Haas; Dirk Gevers; Ashlee M. Earl; Mike Feldgarden; Doyle V. Ward; Georgia Giannoukos; Dawn Ciulla; Diana Tabbaa; Sarah K. Highlander; Erica Sodergren; Barbara A. Methé; Todd Z. DeSantis; Joseph F. Petrosino; Rob Knight; Bruce Birren

Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Relating the metatranscriptome and metagenome of the human gut.

Eric A. Franzosa; Xochitl C. Morgan; Nicola Segata; Levi Waldron; Joshua Reyes; Ashlee M. Earl; Georgia Giannoukos; Matthew R. Boylan; Dawn Ciulla; Dirk Gevers; Jacques Izard; Wendy S. Garrett; Andrew T. Chan; Curtis Huttenhower

Significance Recent years have seen incredible growth in both the scale and specificity of projects analyzing the microbial organisms living in and on the human body (the human microbiome). Such studies typically require subjects to report to clinics for sample collection, a complicated practice that is impractical for large studies. To address these issues, we developed a protocol that allows subjects to collect microbiome samples at home and ship them to laboratories for multiple different types of molecular analysis. Measurements of microbial species, gene, and gene transcript composition within self-collected samples were consistent across sampling methods. In addition, our subsequent analysis of these samples revealed interesting similarities and differences between the measured functional potential and functional activity of the human microbiome. Although the composition of the human microbiome is now well-studied, the microbiota’s >8 million genes and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. We conducted what is, to our knowledge, one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (<5%) displaying between-method variation. Next, we investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut, but with minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation. The results thus detail relationships between community genomic potential and gene expression in the gut, and establish the feasibility of metatranscriptomic investigations in subject-collected and shipped samples.


PLOS ONE | 2012

Evaluation of 16s rDNA-based community profiling for human microbiome research

Doyle V. Ward; Dirk Gevers; Georgia Giannoukos; Ashlee M. Earl; Barbara A. Methé; Erica Sodergren; Michael Feldgarden; Dawn Ciulla; Diana Tabbaa; Cesar Arze; Elizabeth L. Appelbaum; Leigh Aird; Scott Anderson; Tulin Ayvaz; Edward A. Belter; Monika Bihan; Toby Bloom; Jonathan Crabtree; Laura Courtney; Lynn K. Carmichael; David J. Dooling; Rachel L. Erlich; Candace N. Farmer; Lucinda Fulton; Robert S. Fulton; Hongyu Gao; John Gill; Brian J. Haas; Lisa Hemphill; Otis Hall

The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730 and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for classification- and OTU-based analysis of community structure. The data production protocols used for this work are those used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can be informative for interpreting the large body of clinical 16S rDNA data produced for this project.


Nature Biotechnology | 2014

Functional optimization of gene clusters by combinatorial design and assembly

Michael J. Smanski; Swapnil Bhatia; Dehua Zhao; Yongjin Park; Lauren B.A. Woodruff; Georgia Giannoukos; Dawn Ciulla; Michele Busby; Johnathan Calderon; Robert Nicol; D. Benjamin Gordon; Douglas Densmore; Christopher A. Voigt

Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.


Genome Biology | 2012

Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes.

Georgia Giannoukos; Dawn Ciulla; Katherine H. Huang; Brian J. Haas; Jacques Izard; Joshua Z. Levin; Jonathan Livny; Ashlee M. Earl; Dirk Gevers; Doyle V. Ward; Chad Nusbaum; Bruce W. Birren; Andreas Gnirke

We have developed a process for transcriptome analysis of bacterial communities that accommodates both intact and fragmented starting RNA and combines efficient rRNA removal with strand-specific RNA-seq. We applied this approach to an RNA mixture derived from three diverse cultured bacterial species and to RNA isolated from clinical stool samples. The resulting expression profiles were highly reproducible, enriched up to 40-fold for non-rRNA transcripts, and correlated well with profiles representing undepleted total RNA.


PLOS ONE | 2012

Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease.

Eli Papa; Michael Docktor; Christopher Smillie; Sarah Weber; Sarah P. Preheim; Dirk Gevers; Georgia Giannoukos; Dawn Ciulla; Diana Tabbaa; Jay Ingram; David B. Schauer; Doyle V. Ward; Joshua R. Korzenik; Ramnik J. Xavier; Athos Bousvaros; Eric J. Alm

Background Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. Methodology/Principal Findings We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children’s Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn’s disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Conclusions/Significance Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.


Nature Methods | 2015

Simultaneous generation of many RNA-seq libraries in a single reaction

Alexander A. Shishkin; Georgia Giannoukos; Alper Kucukural; Dawn Ciulla; Michele Busby; Christine Surka; Jenny Chen; Roby P. Bhattacharyya; Robert F Rudy; Milesh Patel; Nathaniel Novod; Deborah T. Hung; Andreas Gnirke; Manuel Garber; Mitchell Guttman; Jonathan Livny

Although RNA-seq is a powerful tool, the considerable time and cost associated with library construction has limited its utilization for various applications. RNAtag-Seq, an approach to generate multiple RNA-seq libraries in a single reaction, lowers time and cost per sample, and it produces data on prokaryotic and eukaryotic samples that are comparable to those generated by traditional strand-specific RNA-seq approaches.


BMC Genomics | 2018

UDiTaS™, a genome editing detection method for indels and genome rearrangements

Georgia Giannoukos; Dawn Ciulla; Eugenio Marco; Hayat S. Abdulkerim; Luis Alejandro Barrera; Anne Bothmer; Vidya Dhanapal; Sebastian Gloskowski; Hariharan Jayaram; Morgan L. Maeder; Maxwell N. Skor; Tongyao Wang; Vic E. Myer; C. Wilson

BackgroundUnderstanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations.ResultsTo overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290, and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes.ConclusionsUDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.


Genome Biology | 2010

Evaluation of bacterial ribosomal RNA (rRNA) depletion methods for sequencing microbial community transcriptomes.

Dawn Ciulla; Georgia Giannoukos; Ashlee M. Earl; Michael Feldgarden; Dirk Gevers; Joshua Z. Levin; Jonathan Livny; Doyle V. Ward; Andreas Gnirke; Chad Nusbaum; Bruce W. Birren


Archive | 2018

PROCÉDÉS D'ÉVALUATION DE LA COUPURE PAR LES NUCLÉASES

Georgia Giannoukos; C. Wilson; Dawn Ciulla

Collaboration


Dive into the Dawn Ciulla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge