Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn D. Parker is active.

Publication


Featured researches published by Dawn D. Parker.


Journal of Medicinal Chemistry | 2009

Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects.

Tao Wang; Zhiwei Yin; Zhongxing Zhang; John A. Bender; Zhong Yang; Graham Johnson; Zheng Yang; Lisa Zadjura; Celia D’Arienzo; Dawn D. Parker; Christophe Gesenberg; Gregory Yamanaka; Yi-Fei Gong; Hsu-Tso Ho; Hua Fang; Nannan Zhou; Brian McAuliffe; Betsy J. Eggers; Li Fan; Beata Nowicka-Sans; Ira B. Dicker; Qi Gao; Richard J. Colonno; Pin-Fang Lin; Nicholas A. Meanwell; John F. Kadow

Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.


Journal of Medicinal Chemistry | 2014

Hepatitis C virus NS5A replication complex inhibitors: the discovery of daclatasvir.

Makonen Belema; Van N. Nguyen; Carol Bachand; Dan H. Deon; Jason Goodrich; Clint A. James; Rico Lavoie; Omar D. Lopez; Alain Martel; Jeffrey L. Romine; Edward H. Ruediger; Lawrence B. Snyder; Denis R. St. Laurent; Fukang Yang; Juliang Zhu; Henry S. Wong; David R. Langley; Stephen P. Adams; Glenn H. Cantor; Anjaneya Chimalakonda; Aberra Fura; Benjamin M. Johnson; Jay O. Knipe; Dawn D. Parker; Kenneth S. Santone; Robert A. Fridell; Julie A. Lemm; Donald R. O’Boyle; Richard J. Colonno; Min Gao

The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.


Journal of Medicinal Chemistry | 2014

Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase.

Robert G. Gentles; Min Ding; John A. Bender; Carl P. Bergstrom; Katharine A. Grant-Young; Piyasena Hewawasam; Thomas William Hudyma; Scott Martin; Andrew Nickel; Alicia Regueiro-Ren; Yong Tu; Zhong Yang; Kap-Sun Yeung; Xiaofan Zheng; Sam T. Chao; Jung-Hui Sun; Brett R. Beno; Daniel M. Camac; Mian Gao; Paul E. Morin; Steven Sheriff; Jeff Tredup; John Wan; Mark R. Witmer; Dianlin Xie; Umesh Hanumegowda; Jay O. Knipe; Kathy Mosure; Kenneth S. Santone; Dawn D. Parker

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Journal of Medicinal Chemistry | 2013

Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248).

Alicia Regueiro-Ren; Qiufen M. Xue; Jacob Swidorski; Yi-Fei Gong; Marina Mathew; Dawn D. Parker; Zheng Yang; Betsy J. Eggers; Celia D’Arienzo; Yongnian Sun; Jacek Malinowski; Qi Gao; Dedong Wu; David R. Langley; Richard J. Colonno; Caly Chien; Dennis M. Grasela; Ming Zheng; Pin-Fang Lin; Nicholas A. Meanwell; John F. Kadow

A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding, and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.


Journal of Medicinal Chemistry | 2012

Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment 6. Preclinical and Human Pharmacokinetic Profiling of BMS-663749, a Phosphonooxymethyl Prodrug of the HIV-1 Attachment Inhibitor 2-(4-Benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043)

John F. Kadow; Yasutsugu Ueda; Nicholas A. Meanwell; Timothy P. Connolly; Tao Wang; Chung-Pin Chen; Kap-Sun Yeung; Juliang Zhu; John A. Bender; Zhong Yang; Dawn D. Parker; Pin-Fang Lin; Richard J. Colonno; Marina Mathew; Daniel Morgan; Ming Zheng; Caly Chien; Dennis M. Grasela

BMS-663749, a phosphonooxymethyl prodrug 4 of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043) (2) was prepared and profiled in a variety of preclinical in vitro and in vivo models designed to assess its ability to deliver parent drug following oral administration. The data showed that prodrug 4 had excellent potential to significantly reduce dissolution rate-limited absorption following oral dosing in humans. Clinical studies in normal healthy subjects confirmed the potential of 4, revealing that the prodrug significantly increased both the AUC and C(max) of 2 compared to a solid capsule formulation containing the parent drug upon dose escalation. These data provided guidance for further efforts to obtain an effective HIV-1 attachment inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2009

Inhibitors of HIV-1 attachment. Part 4: A study of the effect of piperazine substitution patterns on antiviral potency in the context of indole-based derivatives

Tao Wang; John F. Kadow; Zhongxing Zhang; Zhiwei Yin; Qi Gao; Dedong Wu; Dawn D. Parker; Zheng Yang; Lisa Zadjura; Brett A. Robinson; Yi Fei Gong; Wade S. Blair; Pei Yong Shi; Gregory Yamanaka; Pin fang Lin; Nicholas A. Meanwell

4-Fluoro- and 4-methoxy-1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (2 and 3, respectively) have been characterized as potent inhibitors of HIV-1 attachment that interfere with the interaction of viral gp120 with the host cell receptor CD4. As part of an effort to understand fundamental aspects of this pharmacophore, discovered originally using a high throughput cell-based screen, modification and substitution of the piperazine ring was examined in the context of compounds 6a-ah. The piperazine ring was shown to be a critical element of the HIV-1 attachment inhibiting pharmacophore, acting as a scaffold to deploy the indole glyoxamide and benzamide in a topographical relationship that complements the binding site on gp120.


ACS Medicinal Chemistry Letters | 2016

Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity

Alicia Regueiro-Ren; Zheng Liu; Yan Chen; Ny Sin; Sing-Yuen Sit; Jacob Swidorski; Jie Chen; Brian Lee Venables; Juliang Zhu; Beata Nowicka-Sans; Tricia Protack; Zeyu Lin; Brian Terry; Himadri Samanta; Sharon Zhang; Zhufang Li; Brett R. Beno; Xiaohua S. Huang; Sandhya Rahematpura; Dawn D. Parker; Roy Haskell; Susan R. Jenkins; Kenneth S. Santone; Mark Cockett; Mark Krystal; Nicholas A. Meanwell; Umesh Hanumegowda; Ira B. Dicker

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.


Bioorganic & Medicinal Chemistry Letters | 2013

Inhibitors of HIV-1 attachment. Part 10. The discovery and structure–activity relationships of 4-azaindole cores

Tao Wang; Zhong Yang; Zhongxing Zhang; Yi-Fei Gong; Keith Riccardi; Pin-Fang Lin; Dawn D. Parker; Sandhya Rahematpura; Marina Mathew; Ming Zheng; Nicholas A. Meanwell; John F. Kadow; John A. Bender

A series of 4-azaindole oxoacetic acid piperazine benzamides was synthesized and evaluated in an effort to identify an oral HIV-1 attachment inhibitor with the potential to improve upon the pre-clinical profile of BMS-378806 (7), an initial clinical compound. Modifications at the 7-position of the 4-azaindole core modulated potency significantly and SAR showed that certain compounds with a 5-membered ring heteroaryl group at that position were the most potent. Four of the compounds with the best profiles were evaluated in a rat pharmacokinetic model and all had superior oral bioavailability and lower clearance when compared with 7.


Bioorganic & Medicinal Chemistry Letters | 2016

Inhibitors of HIV-1 maturation: Development of structure–activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids

Jacob Swidorski; Zheng Liu; Sing-Yuen Sit; Jie Chen; Yan Chen; Ny Sin; Brian Lee Venables; Dawn D. Parker; Beata Nowicka-Sans; Brian Terry; Tricia Protack; Sandhya Rahematpura; Umesh Hanumegowda; Susan Jenkins; Mark Krystal; Ira B. Dicker; Nicholas A. Meanwell; Alicia Regueiro-Ren

We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.


Bioorganic & Medicinal Chemistry Letters | 2013

Inhibitors of HIV-1 attachment. Part 11: The discovery and structure–activity relationships associated with 4,6-diazaindole cores

John A. Bender; Zhong Yang; Betsy J. Eggers; Yi-Fei Gong; Pin-Fang Lin; Dawn D. Parker; Sandhya Rahematpura; Ming Zheng; Nicholas A. Meanwell; John F. Kadow

A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.

Collaboration


Dive into the Dawn D. Parker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Wang

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge