Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn J. Marshall is active.

Publication


Featured researches published by Dawn J. Marshall.


Journal of Virology | 2011

Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors

Mattia Bonsignori; Kwan-Ki Hwang; Xi Chen; Chun-Yen Tsao; Lynn Morris; Elin S. Gray; Dawn J. Marshall; John A. Crump; Saidi Kapiga; Noel E. Sam; Faruk Sinangil; Marie Pancera; Yang Yongping; Baoshan Zhang; Jiang Zhu; Peter D. Kwong; Sijy O'Dell; John R. Mascola; Lan Wu; Gary J. Nabel; Sanjay Phogat; Michael S. Seaman; John F. Whitesides; M. Anthony Moody; Garnett Kelsoe; Xinzhen Yang; Joseph Sodroski; George M. Shaw; David C. Montefiori; Thomas B. Kepler

ABSTRACT V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.


Journal of Virology | 2012

Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family

Mattia Bonsignori; Justin Pollara; M. Anthony Moody; Michael D. Alpert; Xi Chen; Kwan-Ki Hwang; Peter B. Gilbert; Ying Huang; Thaddeus C. Gurley; Daniel M. Kozink; Dawn J. Marshall; John F. Whitesides; Chun-Yen Tsao; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Jerome H. Kim; Nelson L. Michael; Georgia D. Tomaras; David C. Montefiori; George K. Lewis; Anthony L. DeVico; David T. Evans; Guido Ferrari; Hua-Xin Liao; Barton F. Haynes

ABSTRACT The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs.


Journal of Clinical Oncology | 2007

Partially Matched, Nonmyeloablative Allogeneic Transplantation: Clinical Outcomes and Immune Reconstitution

David A. Rizzieri; Liang Piu Koh; Gwynn D. Long; Cristina Gasparetto; Keith M. Sullivan; Mitchell E. Horwitz; John P. Chute; Clayton A. Smith; Jerald Z. Gong; Anand S. Lagoo; Donna Niedzwiecki; Jeannette M. Dowell; Barbara Waters-Pick; Congxiao Liu; Dawn J. Marshall; James J. Vredenburgh; Jon P. Gockerman; Carlos M. DeCastro; Joseph O. Moore; Nelson J. Chao

PURPOSE Allogeneic transplantation is typically limited to younger patients having a matched donor. To allow a donor to be found for nearly all patients, we have used a nonmyeloablative conditioning regimen in conjunction with stem cells from a related donor with one fully mismatched HLA haplotype. PATIENTS AND METHODS Fludarabine, cyclophosphamide, and alemtuzumab were used as the preparatory regimen. Additional graft-versus-host disease (GVHD) prophylaxis included mycophenolate with or without cyclosporine. Patients with persistence of disease had a donor lymphocyte boost planned. Toxicities, engraftment, response, survival, and immune recovery are reported. RESULTS Forty-nine patients with hematologic malignancies or marrow failure and no other available donors were enrolled. Ninety-four percent of patients had successful engraftment, and 8% had secondary graft failure. The treatment-related mortality rate was 10.2%, and 8% of patients had severe GVHD. Encouraging evidence of quantitative lymphocyte recovery through expansion of transplanted T cells was noted by 3 to 6 months. Seventy-five percent of patients attained a complete remission, and 1-year survival rate was 31% (95% CI, 18% to 44%). A standard-risk group of 19 patients with aplasia or in remission at transplantation demonstrated a 63% 1-year survival rate (95% CI, 38% to 80%) and 2.9-year median overall survival time (95% CI, 6.2 to 48 months). CONCLUSION Nonmyeloablative therapy using haploidentical family member donors is feasible because the main obstacles of GVHD and graft rejection are manageable, allowing readily available stem-cell donors to be found for nearly all patients. Further qualitative and quantitative improvement in immune recovery is needed to address the high rate of relapse and risk of severe infections.


Journal of Virological Methods | 2009

High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies.

Hua-Xin Liao; Marc C. Levesque; Ashleigh Nagel; Ashlyn Dixon; Ruijun Zhang; Emmanuel B. Walter; Robert Parks; John Whitesides; Dawn J. Marshall; Kwan-Ki Hwang; Yi Yang; Xi Chen; Feng Gao; Supriya Munshaw; Thomas B. Kepler; Thomas N. Denny; M. Anthony Moody; Barton F. Haynes

Defining human B cell repertoires to viral pathogens is critical for design of vaccines that induce broadly protective antibodies to infections such as HIV-1 and influenza. Single B cell sorting and cloning of immunoglobulin (Ig) heavy- and light-chain variable regions (V(H) and V(L)) is a powerful technology for defining anti-viral B cell repertoires. However, the Ig-cloning step is time-consuming and prevents high-throughput analysis of the B cell repertoire. Novel linear Ig heavy- and light-chain gene expression cassettes were designed to express Ig V(H) and V(L) genes isolated from sorted single B cells as IgG1 antibody without a cloning step. The cassettes contain all essential elements for transcriptional and translational regulation, including CMV promoter, Ig leader sequences, constant region of IgG1 heavy- or Ig light-chain, poly(A) tail and substitutable V(H) or V(L) genes. The utility of these Ig gene expression cassettes was established using synthetic V(H) or V(L) genes from an anti-HIV-1 gp41 mAb 2F5 as a model system, and validated further using V(H) and V(L) genes isolated from cloned EBV-transformed antibody-producing cell lines. Finally, this strategy was successfully used for rapid production of recombinant influenza mAbs from sorted single human plasmablasts after influenza vaccination. These Ig gene expression cassettes constitute a highly efficient strategy for rapid expression of Ig genes for high-throughput screening and analysis without cloning.


PLOS Medicine | 2009

Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection

Marc C. Levesque; M. Anthony Moody; Kwan Ki Hwang; Dawn J. Marshall; John F. Whitesides; Joshua D. Amos; Thaddeus C. Gurley; Sallie D. Allgood; Benjamin B. Haynes; Nathan Vandergrift; Steven G. Plonk; Daniel Parker; Myron S. Cohen; Georgia D. Tomaras; Paul A. Goepfert; George M. Shaw; Jörn E. Schmitz; Joseph J. Eron; Nicholas J. Shaheen; Charles B. Hicks; Hua-Xin Liao; Martin Markowitz; Garnett Kelsoe; David M. Margolis; Barton F. Haynes

Studying the effects of early HIV infection on human antibody responses, M. Anthony Moody and colleagues find rapid polyclonal B cell differentiation and structural damage to gut-associated lymphoid tissue.


Journal of Experimental Medicine | 2011

Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated

Hua-Xin Liao; Xi Chen; Supriya Munshaw; Ruijun Zhang; Dawn J. Marshall; Nathan Vandergrift; John F. Whitesides; Xiaozhi Lu; Jae-Sung Yu; Kwan-Ki Hwang; Feng Gao; Martin Markowitz; Sonya L. Heath; Katharine J. Bar; Paul A. Goepfert; David C. Montefiori; George C. Shaw; S. Munir Alam; David M. Margolis; Thomas N. Denny; Scott D. Boyd; Eleanor Marshal; Michael Egholm; Birgitte B. Simen; Bozena Hanczaruk; Andrew Fire; Gerald Voss; Garnett Kelsoe; Georgia D. Tomaras; M. Anthony Moody

Many HIV-1 envelope-reactive antibodies shortly after HIV-1 transmission may arise from crow-reactive memory B cells previously stimulated by non-HIV-1 host or microbial antigens


PLOS Medicine | 2007

Gene expression signatures that predict radiation exposure in mice and humans.

Holly K. Dressman; Garrett G. Muramoto; Nelson J. Chao; Sarah O. Meadows; Dawn J. Marshall; Geoffrey S. Ginsburg; Joseph R. Nevins; John P. Chute

Background The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation. Methods and Findings We have made use of gene expression analysis of peripheral blood (PB) mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans. Conclusions We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure.


PLOS ONE | 2011

Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting.

Lynn Morris; Xi Chen; Munir Alam; Georgia D. Tomaras; Ruijun Zhang; Dawn J. Marshall; Bing Chen; Robert Parks; Andrew Foulger; Frederick H. Jaeger; Michele. Donathan; Mira. Bilska; Elin S. Gray; Salim Safurdeen. Abdool Karim; Thomas B. Kepler; John Whitesides; David C. Montefiori; M. Anthony Moody; Hua-Xin Liao; Barton F. Haynes

Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673–680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (VH1-69) and variable kappa light chain (VK3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672–680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.


PLOS ONE | 2011

H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.

M. Anthony Moody; Ruijun Zhang; Emmanuel B. Walter; Christopher W. Woods; Geoffrey S. Ginsburg; Micah T. McClain; Thomas N. Denny; Xi Chen; Supriya Munshaw; Dawn J. Marshall; John F. Whitesides; Mark Drinker; Joshua D. Amos; Thaddeus C. Gurley; Joshua Eudailey; Andrew Foulger; Katherine R. DeRosa; Robert Parks; R. Ryan Meyerhoff; Jae-Sung Yu; Daniel M. Kozink; Brice E. Barefoot; Elizabeth Ramsburg; Surender Khurana; Hana Golding; Nathan Vandergrift; S. Munir Alam; Georgia D. Tomaras; Thomas B. Kepler; Garnett Kelsoe

Background During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. Methods and Findings To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. Conclusion The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.


Journal of Virology | 2014

HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities.

Justin Pollara; Mattia Bonsignori; M. Anthony Moody; Pinghuang Liu; S. Munir Alam; Kwan-Ki Hwang; Thaddeus C. Gurley; Daniel M. Kozink; Lc Armand; Dawn J. Marshall; John F. Whitesides; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Merlin L. Robb; Robert J. O'Connell; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Georgia D. Tomaras; Hua-Xin Liao; Barton F. Haynes; Guido Ferrari

ABSTRACT The RV144 ALVAC/AIDSVax HIV-1 vaccine clinical trial showed an estimated vaccine efficacy of 31.2%. Viral genetic analysis identified a vaccine-induced site of immune pressure in the HIV-1 envelope (Env) variable region 2 (V2) focused on residue 169, which is included in the epitope recognized by vaccinee-derived V2 monoclonal antibodies. The ALVAC/AIDSVax vaccine induced antibody-dependent cellular cytotoxicity (ADCC) against the Env V2 and constant 1 (C1) regions. In the presence of low IgA Env antibody levels, plasma levels of ADCC activity correlated with lower risk of infection. In this study, we demonstrate that C1 and V2 monoclonal antibodies isolated from RV144 vaccinees synergized for neutralization, infectious virus capture, and ADCC. Importantly, synergy increased the HIV-1 ADCC activity of V2 monoclonal antibody CH58 at concentrations similar to that observed in plasma of RV144 vaccinees. These findings raise the hypothesis that synergy among vaccine-induced antibodies with different epitope specificities contributes to HIV-1 antiviral antibody responses and is important to induce for reduction in the risk of HIV-1 transmission. IMPORTANCE The Thai RV144 ALVAC/AIDSVax prime-boost vaccine efficacy trial represents the only example of HIV-1 vaccine efficacy in humans to date. Studies aimed at identifying immune correlates involved in the modest vaccine-mediated protection identified HIV-1 envelope (Env) variable region 2-binding antibodies as inversely correlated with infection risk, and genetic analysis identified a site of immune pressure within the region recognized by these antibodies. Despite this evidence, the antiviral mechanisms by which variable region 2-specific antibodies may have contributed to lower rates of infection remain unclear. In this study, we demonstrate that vaccine-induced HIV-1 envelope variable region 2 and constant region 1 antibodies synergize for recognition of virus-infected cells, infectious virion capture, virus neutralization, and antibody-dependent cellular cytotoxicity. This is a major step in understanding how these types of antibodies may have cooperatively contributed to reducing infection risk and should be considered in the context of prospective vaccine design.

Collaboration


Dive into the Dawn J. Marshall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barton F. Haynes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge