Dawn Katafiasz
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawn Katafiasz.
Cell Communication and Adhesion | 2007
Tammy Sobolik-Delmaire; Dawn Katafiasz; Sarah A. Keim; My G. Mahoney; James K. Wahl
Desmosomes are prominent cell–cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell–cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell–cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell–cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.
Journal of Biological Chemistry | 2006
Tammy Sobolik-Delmaire; Dawn Katafiasz; James K. Wahl
Plakophilins are armadillo repeat-containing proteins, initially identified as desmosomal plaque proteins that have subsequently been shown to also localize to the nucleus. Loss of plakophilin-1 is the underlying cause of ectodermal dysplasia/skin fragility syndrome, and skin from these patients exhibits desmosomes that are reduced in size and number. Thus, it has been suggested that plakophilin-1 plays an important role in desmosome stability and/or assembly. In this study, we used a cell culture system (A431DE cells) that expresses all of the proteins necessary to assemble a desmosome, except plakophilin-1. Using this cell line, we sought to determine the role of plakophilin-1 in de novo desmosome assembly. When exogenous plakophilin-1 was expressed in these cells, desmosomes were assembled, as assessed by electron microscopy and immunofluorescence localization of desmoplakin, into punctate structures. Deletion mutagenesis experiments revealed that amino acids 686–726 in the carboxyl terminus of plakophilin-1 are required for its localization to the plasma membrane. In addition, we showed that amino acids 1–34 in the amino terminus were necessary for subsequent recruitment of desmoplakin to the membrane and desmosome assembly.
Journal of Biological Chemistry | 2011
Gina L. Razidlo; Dawn Katafiasz; Gregory S. Taylor
Myotubularin is a 3-phosphoinositide phosphatase that is mutated in X-linked myotubular myopathy, a severe neonatal disorder in which skeletal muscle development and/or regeneration is impaired. In this report we provide evidence that siRNA-mediated silencing of myotubularin expression markedly inhibits growth factor-stimulated Akt phosphorylation, leading to activation of caspase-dependent pro-apoptotic signaling in HeLa cells and primary human skeletal muscle myotubes. Myotubularin silencing also inhibits Akt-dependent signaling through the mammalian target of rapamycin complex 1 as assessed by p70 S6-kinase and 4E-BP1 phosphorylation. Similarly, phosphorylation of FoxO transcription factors is also significantly reduced in myotubularin-deficient cells. Our data further suggest that inhibition of Akt activation and downstream survival signaling in myotubularin-deficient cells is caused by accumulation of the MTMR substrate lipid phosphatidylinositol 3-phosphate generated from the type II phosphatidylinositol 3-kinase PIK3C2B. Our findings are significant because they suggest that myotubularin regulates Akt activation via a cellular pool of phosphatidylinositol 3-phosphate that is distinct from that generated by the type III phosphatidylinositol 3-kinase hVps34. Because impaired Akt signaling has been tightly linked to skeletal muscle atrophy, we hypothesize that loss of Akt-dependent growth/survival cues due to impaired myotubularin function may be a critical factor underlying the severe skeletal muscle atrophy characteristic of muscle fibers in patients with X-linked myotubular myopathy.
Cell Adhesion & Migration | 2011
Dawn Katafiasz; Lynette M. Smith; James K. Wahl
The Snail family of zinc finger transcription factors plays an important role in epithelial to mesenchymal transition (EMT) in a variety of tissues and systems. Slug (SNAI2) expression has been shown to directly contribute to a subset of events required for EMT in events such as re-epithelialization during wound healing and neural crest cell migration. In addition, slug expression was shown to correlate with disease recurrence in head and neck squamous cell carcinoma (HNSCC) patients. Based on this association we chose to specifically examine the effects of exogenous slug expression in HNSCC cells and specifically assess adhesive junction assembly and the motility characteristics in these cells. Slug expression led to changes in adherens junction and desmosome assembly characterized by a classical cadherin switch and loss of desmosome assembly. Additionally, we performed gene expression profiling to identify novel slug dependent gene expression changes in a HNSCC cell line. In addition to genes known to be altered during EMT, we identified a novel set of Slug responsive genes that will provide a better understanding of slug overexpression during EMT and HNSCC progression.
Traffic | 2015
James B. Reinecke; Dawn Katafiasz; Naava Naslavsky; Steve Caplan
During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like‐1 (MICAL‐L1) and C‐terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL‐L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi‐nucleated cells. We provide evidence that bi‐nucleation in MICAL‐L1‐ and EHD1‐depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL‐L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1‐independent function for MICAL‐L1 earlier in mitosis. Moreover, we provide evidence that MICAL‐L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL‐L1 and EHD1 during the cell cycle.
Traffic | 2011
Bishuang Cai; Dawn Katafiasz; Vaclav Horejsi; Naava Naslavsky
EHD1 regulates the trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane. However, the potential role of EHD1 in regulating the family of glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) has not been determined. Here we demonstrate a novel role for EHD1 in regulating the trafficking of CD59, an endogenous GPI‐AP, at early stages of trafficking through the endocytic pathway. EHD1 displays significant colocalization with newly internalized CD59. Upon EHD1 depletion, there is a rapid Rab5‐independent coalescence of CD59 in the ERC region. However, expression of an active Arf6 mutant (Q67L), which traps internalized pre‐sorting endosomal cargo in phosphatidylinositol(4,5)‐bisphosphate enriched vacuoles, prevents this coalescence. It is of interest that sustained PKC activation leads to a similar coalescence of CD59 at the ERC, and treatment of EHD1‐depleted cells with a PKC inhibitor (Go6976) blocked this rapid relocation of CD59. However, unlike sustained PKC activation, EHD1 depletion does not induce the translocation of PKCα to ERC. The results presented herein provide evidence that EHD1 is involved in the control of CD59 transport from pre‐sorting endosomes to the ERC in a PKC‐dependent manner. However, the mechanisms of EHD1‐induced coalescence of CD59 at the ERC differ from those induced by sustained PKC activation.
Journal of Cell Science | 2014
James B. Reinecke; Dawn Katafiasz; Naava Naslavsky; Steve Caplan
ABSTRACT Localization of the non-receptor tyrosine kinase Src to the cell periphery is required for its activation and to mediate focal adhesion turnover, cell spreading and migration. Inactive Src localizes to a perinuclear compartment and the movement of Src to the plasma membrane is mediated by endocytic transport. However, the precise pathways and regulatory proteins that are responsible for SRC transport are incompletely understood. Here, we demonstrate that Src partially colocalizes with the endocytic regulatory protein MICAL-L1 (molecule interacting with CasL-like protein 1) in mammalian cells. Furthermore, MICAL-L1 is required for growth-factor- and integrin-induced Src activation and transport to the cell periphery in HeLa cells and human fibroblasts. Accordingly, MICAL-L1 depletion impairs focal adhesion turnover, cell spreading and cell migration. Interestingly, we find that the MICAL-L1 interaction partner EHD1 (EH domain-containing protein 1) is also required for Src activation and transport. Moreover, the MICAL-L1-mediated recruitment of EHD1 to Src-containing recycling endosomes is required for the release of Src from the perinuclear endocytic recycling compartment in response to growth factor stimulation. Our study sheds new light on the mechanism by which Src is transported to the plasma membrane and activated, and provides a new function for MICAL-L1 and EHD1 in the regulation of intracellular non-receptor tyrosine kinases.
Alcoholism: Clinical and Experimental Research | 2015
Kristina L. Bailey; Debra J. Romberger; Dawn Katafiasz; Art J. Heires; Joseph H. Sisson; Todd A. Wyatt; Ellen L. Burnham
BACKGROUND The lung has a highly regulated system of innate immunity to protect itself from inhaled microbes and toxins. The first line of defense is mucociliary clearance, but if invaders overcome this, inflammatory pathways are activated. Toll-like receptors (TLRs) are expressed on the airway epithelium. Their signaling initiates the inflammatory cascade and leads to production of inflammatory cytokines such as interleukin (IL)-6 and IL-8. We hypothesized that airway epithelial insults, including heavy alcohol intake or smoking, would alter the expression of TLRs on the airway epithelium. METHODS Bronchoscopy with bronchoalveolar lavage and brushings of the airway epithelium was performed in otherwise healthy subjects who had normal chest radiographs and spirometry. A history of alcohol use disorders (AUDs) was ascertained using the Alcohol Use Disorders Identification Test (AUDIT), and a history of cigarette smoking was also obtained. Age, gender, and nutritional status in all groups were similar. We used real-time polymerase chain reaction (PCR) to quantitate TLR1 to 9 and enzyme-linked immune assay to measure tumor necrosis factor-α, IL-6, and IL-8. RESULTS Airway brushings were obtained from 26 nonsmoking/non-AUD subjects, 28 smoking/non-AUD subjects, 36 smoking/AUD subjects, and 17 nonsmoking/AUD subjects. We found that TLR2 is up-regulated in AUD subjects, compared to nonsmoking/non-AUD subjects, and correlated with their AUDIT scores. We also measured a decrease in TLR4 expression in AUD subjects that correlated with AUDIT score. IL-6 and IL-8 were also increased in bronchial washings from AUD subjects. CONCLUSIONS We have previously demonstrated in normal human bronchial epithelial cells that in vitro alcohol exposure up-regulates TLR2 through a NO/cGMP/PKG-dependent pathway, resulting in up-regulation of inflammatory cytokine production after Gram-positive bacterial product stimulation. Our current translational study confirms that TLR2 is also up-regulated in humans with AUDs.
Toxicological Sciences | 2018
Tara M Nordgren; Kristina L. Bailey; Art J. Heires; Dawn Katafiasz; Debra J. Romberger
Agricultural organic dust exposures trigger harmful airway inflammation, and workers experiencing repetitive dust exposures are at increased risk for lung disease. Mesenchymal stem/stromal cells (MSCs) regulate wound repair processes in the lung, and may contribute to either proresolution or -fibrotic lung responses. It is unknown how organic dust exposures alter lung-resident MSC activation and proinflammatory versus prorepair programs in the lung. To address this gap in knowledge, we isolated human lung-resident MSC from lung tissue. Cells were stimulated with aqueous extracts of organic dusts (DE) derived from swine confinement facilities and were assessed for changes in proliferative and migratory capacities, and production of proinflammatory and prorepair mediators. Through these investigations, we found that DE induces significant release of proinflammatory mediators TNF-α, IL-6, IL-8, and matrix metalloproteases, while also inducing the production of prorepair mediators amphiregulin, FGF-10, and resolvin D1. In addition, DE significantly reduced the growth and migratory capacities of lung-resident MSC. Together, these investigations indicate lung-resident MSC activation and wound repair activities are altered by organic dust exposures. These findings warrant future investigations to assess how organic dusts affect lung-resident mesenchymal stem/stromal cell function and impact airway inflammation, injury, and repair during agricultural aerosol exposures.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2018
Kristina L. Bailey; Kusum K. Kharbanda; Dawn Katafiasz; Joseph H. Sisson; Todd A. Wyatt
Older people are four times more likely to develop pneumonia than younger people. As we age, many components of pulmonary innate immunity are impaired, including slowing of mucociliary clearance. Ciliary beat frequency (CBF) is a major determinant of mucociliary clearance, and it slows as we age. We hypothesized that CBF is slowed in aging because of increased oxidative stress, which activates PKCε signaling. We pharmacologically inhibited PKCε in ex vivo mouse models of aging. We measured a slowing of CBF with aging that was reversed with inhibition using the novel PKC inhibitor, Ro-31-8220, as well as the PKCε inhibitor, PKCe141. Inhibition of PKCε using siRNA in mouse trachea also returned CBF to normal. In addition, antioxidants decrease PKCε activity and speed cilia. We also aged wild-type and PKCε KO mice and measured CBF. The PKCε KO mice were spared from the CBF slowing of aging. Using human airway epithelial cells from younger and older donors at air-liquid interface (ALI), we inhibited PKCε with siRNA. We measured a slowing of CBF with aging that was reversed with siRNA inhibition of PKCε. In addition, we measured bead clearance speeds in human ALI, which demonstrated a decrease in bead velocity with aging and a return to baseline after inhibition of PKCε. In summary, in human and mouse models, aging is associated with increased oxidant stress, which activates PKCε and slows CBF.