Dawn L. Updike
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawn L. Updike.
Journal of Biological Chemistry | 1997
James J. Tomasek; Nancy L. Halliday; Dawn L. Updike; Joan S. Ahern-Moore; Thien Khai H Vu; Rose W. Liu; Eric W. Howard
Gelatinase A (GL-A) is a matrix metalloproteinase (MMP) involved in both connective tissue remodeling and tumor invasion. GL-A activation is mediated by a membrane-type MMP (MT-MMP) that cleaves the GL-A propeptide. In this study, we examined the role of the actin cytoskeleton in regulating GL-A activation and MT-MMP-1 expression. Human palmar fascia fibroblasts and human fetal lung fibroblasts were cultured on a planar substratum or within different types of collagen lattices. Fibroblasts that formed stress fibers, either on a planar substratum or within an attached collagen lattice, showed reduced GL-A activation compared with fibroblasts lacking stress fibers, within either floating or stress-released collagen lattices. To determine whether changes in the organization of the actin cytoskeleton could promote GL-A activation, fibroblasts with stress fibers were treated with cytochalasin D. Within 24 h after treatment, GL-A activation was dramatically increased. Associated with this GL-A activation was an increase in MT-MMP-1 mRNA as determined by Northern blot analysis. Treatment with nocodazole, which induced microtubule depolymerization and cell shape changes without affecting stress fibers, did not promote GL-A activation. These results suggest that the extracellular matrix and the actin cytoskeleton transduce signals that modulate GL-A activation and regulate tissue remodeling.
Journal of Biological Chemistry | 2006
George M. Risinger; Tamara S. Hunt; Dawn L. Updike; Elizabeth C. Bullen; Eric W. Howard
In response to growth factors, vascular smooth muscle cells (VSMCs) undergo a phenotypic modulation from a contractile, non-proliferative state to an activated, migratory state. This transition is characterized by changes in their gene expression profile, particularly by a significant down-regulation of contractile proteins. Platelet-derived growth factor (PDGF)-BB has long been known to initiate VSMC de-differentiation and mitogenesis. Insulin-like growth factor (IGF)-I, on the other hand, has differing effects depending on the model studied. Here, we report that both IGF-I and PDGF-BB stimulated VSMC de-differentiation of rat heart-derived SMCs in culture, although only PDGF-BB was capable of inducing proliferation. Although both PDGF-BB and IGF-I stimulation resulted in decreased smooth muscle α-actin expression and increased matrix metalloproteinase (MMP)-2 expression, the response to IGF-I was significantly more rapid. The increased MMP-2 expression in response to both growth factors was due to increased transcription rates and was dependent on the action of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. Both PDGF-BB and IGF-I activated PI3K/Akt to similar degrees; however, only PDGF-BB concomitantly stimulated an inhibitory signaling pathway that antagonized the effects of Akt but did not alter the extent or duration of Akt activation. Together, these findings suggest that changes in MMP-2 expression are part of the program of VSMC phenotypic modulation and that both PDGF-BB and IGF-I, despite their different abilities to induce proliferation in this model, are capable of inducing VSMC activation.
Plastic and Reconstructive Surgery | 2002
Ziv M. Peled; Eric Phelps; Dawn L. Updike; James Chang; Thomas M. Krummel; Eric W. Howard; Michael T. Longaker
Early gestation mammalian fetuses possess the remarkable ability to heal cutaneous wounds in a scarless fashion. Over the past 20 years, scientists have been working to decipher the mechanisms underlying this phenomenon. Much of the research to date has focused on fetal correlates of adult wound healing that promote fibrosis and granulation tissue formation. It is important to remember, however, that wound repair consists of a balance between tissue synthesis, deposition, and degradation. Relatively little attention has been paid to this latter component of the fetal wound healing process. In this study, we examined the ontogeny of ten matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in nonwounded fetal rat skin and fibroblasts as a function of gestational age. We used a semiquantitative polymerase chain reaction protocol to analyze these important enzymes at time points that represent both the scarless and scar-forming periods of rat gestation. The enzymes evaluated were collagenase-1 (MMP-1), stromelysin-1 (MMP-3), gelatinase A (MMP-2), gelatinase B (MMP-9), membrane-type matrix metalloproteinases (MT-MMPs) 1, 2, and 3, and TIMPs 1, 2, and 3. Results demonstrated marked increases in gene expression for MMP-1, MMP-3 and MMP-9 that correlated with the onset of scar formation in nonwounded fetal skin. Similar results were noted in terms of MMP-9 gene expression in fetal fibroblasts. These results suggest that differences in the expression of these matrix metalloproteinases may have a role in the scarless wound healing phenotype observed early in fetal rat gestation. Furthermore, our data suggest that the differential expression of gelatinase B (MMP-9) may be mediated by the fetal fibroblasts themselves.
American Journal of Physiology-cell Physiology | 2010
George M. Risinger; Dawn L. Updike; Elizabeth C. Bullen; James J. Tomasek; Eric W. Howard
During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) alpha-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in response to PDGF-BB is complex and involves both stimulatory and inhibitory signaling pathways, resulting in a significant delay in upregulation. Here, we provide evidence that the delay in MMP-2 upregulation may be due to the autocrine expression and activation of transforming growth factor (TGF)-beta, which is known to promote the contractile phenotype in VSMCs. Whereas PDGF-BB could induce the loss of stress fibers and focal adhesions, TGF-beta was able to block or reverse this transition to a noncontractile state. TGF-beta did not, however, suppress early signaling events stimulated by PDGF-BB. Over time, though PDGF-BB induced increased TGF-beta1 levels, it suppressed TGF-beta2 and TGF-beta3 expression, leading to a net decrease in the total TGF-beta pool, resulting in the upregulation of MMP-2. Together, these findings indicate that MMP-2 expression is suppressed by a threshold level of active TGF-beta, which in turn promotes a contractile VSMC phenotype that prevents the upregulation of MMP-2.
Experimental Cell Research | 2012
Eric W. Howard; Beverly J. Crider; Dawn L. Updike; Elizabeth C. Bullen; Eileen E. Parks; Carol J. Haaksma; David M. Sherry; James J. Tomasek
During wound healing, fibroblasts transition from quiescence to a migratory state, then to a contractile myofibroblast state associated with wound closure. We found that the myofibroblast phenotype, characterized by the expression of high levels of contractile proteins, suppresses the expression of the pro-migratory gene, MMP-2. Fibroblasts cultured in a 3-D collagen lattice and allowed to develop tension showed increased contractile protein expression and decreased MMP-2 levels in comparison to a stress-released lattice. In 2-D cultures, factors that promote fibroblast contractility, including serum or TGF-β, down-regulated MMP-2. Pharmacologically inducing F-actin disassembly or reduced contractility increased MMP-2 expression, while conditions that promote F-actin assembly suppressed MMP-2 expression. In all cases, changes in MMP-2 levels were inversely related to changes in the contractile marker, smooth muscle α-actin. To determine if the mechanisms involved in contractile protein gene expression play a direct role in MMP-2 regulation, we used RNAi-mediated knock-down of the myocardin-like factors, MRTF-A and MRTF-B, which induced the down-regulation of contractile protein genes by fibroblasts under both serum-containing and serum-free conditions. In the presence of serum or TGF-β, MRTF-A/B knock-down resulted in the up-regulation of MMP-2; serum-free conditions prevented this increased expression. Together, these results indicate that, while MMP-2 expression is suppressed by F-actin formation, its up-regulation is not simply a consequence of contractile protein down-regulation.
Biochimica et Biophysica Acta | 1999
Kurt D. Bottles; Elizabeth C. Bullen; Dawn L. Updike; Thien Khai H Vu; Eric Phelps; Paula Grammas; Eric W. Howard
Increased expression of gelatinase A is associated with both angiogenesis and alterations in blood vessel structure. Heart-derived endothelial cells derived from spontaneously hypertensive rats (SHR) were found to express significantly more gelatinase A in culture, both at the protein and mRNA level, than endothelial cells from normotensive Wistar-Kyoto (WKY) rats. Other matrix metalloproteinases, as well as their tissue inhibitors, were not differentially regulated. A 1683 bp gelatinase A promoter fragment linked to a luciferase reporter demonstrated up to 40-fold more activity when transfected into SHR-derived cells versus WKY-derived cells. The promoter region between -1324 and -1272, previously termed RE1, contributed up to a five-fold increase in basal promoter activity in both cells, but contributed only 12% of the promoter activity in SHR-derived cells compared to 85% in WKY-derived cells. In SHR-derived cells, but not in WKY-derived cells, a second region between -1435 and -1375, termed RE2, contributed 60% of the total activity of the 1683 bp promoter fragment. Both electrophoretic mobility shift assays and Southwestern blots demonstrated differences in RE2-specific binding factors in nuclear extracts derived from the two cell types. SHR-derived endothelial cells thus represent a new model system to study the regulation of gelatinase A expression, which itself may contribute to the abnormal vascular structure seen in the SHR.
Cell Adhesion & Migration | 2013
David M. Sherry; Eileen E. Parks; Elizabeth C. Bullen; Dawn L. Updike; Eric W. Howard
Cell migration is fundamental to many biological processes, including development, normal tissue remodeling, wound healing, and many pathologies. However, cell migration is a complex process, and understanding its regulation in health and disease requires the ability to manipulate and measure this process quantitatively under controlled conditions. This report describes a simple in vitro assay for quantitative analysis of cell migration in two-dimensional cultures that is an inexpensive alternative to the classic “scratch” assay. The method described utilizes flexible silicone masks fabricated in the lab according to the research demands of the specific experiment to create a cell-free area for cells to invade, followed by quantitative analysis based on widely available microscopic imaging tools. This experimental approach has the important advantage of visualizing cell migration in the absence of the cellular damage and disruption of the substrate that occurs when the “wound” is created in the scratch assay. This approach allows the researcher to study the intrinsic migratory characteristics of cells in the absence of potentially confounding contributions from cellular responses to injury and disruption of cell–substrate interactions. This assay has been used with vascular smooth muscle cells, fibroblasts, and epithelial cell types, but should be applicable to the study of practically any type of cultured cell. Furthermore, this method can be easily adapted for use with fluorescence microscopy, molecular biological, or pharmacological manipulations to explore the molecular mechanisms of cell migration, live cell imaging, fluorescence microscopy, and correlative immunolabeling.
Journal of Investigative Dermatology | 1995
Elizabeth C. Bullen; Michael T. Longaker; Dawn L. Updike; Richard L. Benton; Daniel A. Ladin; Zizheng Hou; Eric W. Howard
American Journal of Physiology-cell Physiology | 2006
Eric Phelps; Dawn L. Updike; Elizabeth C. Bullen; Paula Grammas; Eric W. Howard
The FASEB Journal | 2009
George M. Risinger; Dawn L. Updike; Elizabth C Bullen; James J. Tomasek; Eric W. Howard