Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn M. Wong is active.

Publication


Featured researches published by Dawn M. Wong.


Chemico-Biological Interactions | 2008

Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae

Paul R. Carlier; Troy D. Anderson; Dawn M. Wong; Danny C. Hsu; Joshua A. Hartsel; Ming Ma; Eric A. Wong; Ranginee Choudhury; Polo C.-H. Lam; Maxim Totrov; Jeffrey R. Bloomquist

Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.


Bioorganic & Medicinal Chemistry Letters | 2012

Re-engineering aryl methylcarbamates to confer high selectivity for inhibition of Anopheles gambiae versus human acetylcholinesterase.

Joshua A. Hartsel; Dawn M. Wong; James M. Mutunga; Ming Ma; Troy D. Anderson; Ania Wysinski; Rafique Islam; Eric A. Wong; Sally L. Paulson; Jianyong Li; Polo C.-H. Lam; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

To identify potential human-safe insecticides against the malaria mosquito we undertook an investigation of the structure-activity relationship of aryl methylcarbamates inhibitors of acetylcholinesterase (AChE). Compounds bearing a β-branched 2-alkoxy or 2-thioalkyl group were found to possess good selectivity for inhibition of Anopheles gambiae AChE over human AChE; up to 530-fold selectivity was achieved with carbamate 11d. A 3D QSAR model is presented that is reasonably consistent with log inhibition selectivity of 34 carbamates. Toxicity of these compounds to live Anopheles gambiae was demonstrated using both tarsal contact (filter paper) and topical application protocols.


PLOS ONE | 2012

Select Small Core Structure Carbamates Exhibit High Contact Toxicity to ''Carbamate-Resistant'' Strain Malaria Mosquitoes, Anopheles gambiae (Akron)

Dawn M. Wong; Jianyong Li; Qiao-Hong Chen; Qian Han; James M. Mutunga; Ania Wysinski; Troy D. Anderson; Haizhen Ding; Tiffany L. G. Carpenetti; Astha Verma; Rafique Islam; Sally L. Paulson; Polo C.-H. Lam; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

Acetylcholinesterase (AChE) is a proven target for control of the malaria mosquito (Anopheles gambiae). Unfortunately, a single amino acid mutation (G119S) in An. gambiae AChE-1 (AgAChE) confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT) and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k cat) of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold) were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold). The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC50>5,000 μg/mL). However, one oxime methylcarbamate (aldicarb) and five pyrazol-4-yl methylcarbamates (4a–e) showed good to excellent toxicity to the Akron strain (LC50 = 32–650 μg/mL). These results suggest that appropriately functionalized “small-core” carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.


Bioorganic & Medicinal Chemistry Letters | 2015

Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase.

Eugene Camerino; Dawn M. Wong; Fan Tong; Florian Körber; Aaron D. Gross; Rafique Islam; Elisabet Viayna; James M. Mutunga; Jianyong Li; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed.


Bioorganic & Medicinal Chemistry | 2015

3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

Astha Verma; Dawn M. Wong; Rafique Islam; Fan Tong; Maryam Ghavami; James M. Mutunga; Carla Slebodnick; Jianyong Li; Elisabet Viayna; Polo C.-H. Lam; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification.


Chemico-Biological Interactions | 2013

Aryl methylcarbamates: potency and selectivity towards wild-type and carbamate-insensitive (G119S) Anopheles gambiae acetylcholinesterase, and toxicity to G3 strain An. gambiae.

Dawn M. Wong; Jianyong Li; Polo C.-H. Lam; Joshua A. Hartsel; James M. Mutunga; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

New carbamates that are highly selective for inhibition of Anopheles gambiae acetylcholinesterase (AChE) over the human enzyme might be useful in continuing efforts to limit malaria transmission. In this report we assessed 34 synthesized and commercial carbamates for their selectivity to inhibit the AChEs found in carbamate-susceptible (G3) and carbamate-resistant (Akron) An. gambiae, relative to human AChE. Excellent correspondence is seen between inhibition potencies measured with carbamate-susceptible mosquito homogenate and purified recombinant wild-type (WT) An. gambiae AChE (AgAChE). Similarly, excellent correspondence is seen between inhibition potencies measured with carbamate-resistant mosquito homogenate and purified recombinant G119S AgAChE, consistent with our earlier finding that the Akron strain carries the G119S mutation. Although high (100- to 500-fold) WT An. gambiae vs human selectivity is observed for several compounds, none of the carbamates tested potently inhibits the G119S mutant enzyme. Finally, we describe a predictive model for WT An. gambiae tarsal contact toxicity of the carbamates that relies on inhibition potency, molecular volume, and polar surface area.


Insect Science | 2018

Crystal structure of acetylcholinesterase catalytic subunits of the malaria vector Anopheles gambiae

Qian Han; Dawn M. Wong; Howard Robinson; Haizhen Ding; Polo C.-H. Lam; Maxim Totrov; Paul R. Carlier; Jianyong Li

Qian Han1,2, Dawn M. Wong3, Howard Robinson4, Haizhen Ding2, Polo C. H. Lam5, Maxim M. Totrov5, Paul R. Carlier3 and Jianyong Li2 1Laboratory of Tropical Veterinary Medicine and Vector Biology, and Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China; 2Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA; 3Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA; 4Biology Department, Brookhaven National Laboratory, Upton, New York, USA and 5Molsoft LLC, San Diego, California, USA


Pesticide Biochemistry and Physiology | 2018

Select β- and γ-branched 1-alkylpyrazol-4-yl methylcarbamates exhibit high selectivity for inhibition of Anopheles gambiae versus human acetylcholinesterase

Paul R. Carlier; Qiao-Hong Chen; Astha Verma; Dawn M. Wong; James M. Mutunga; Jasmin Müller; Rafique Islam; Alex M. Shimozono; Fan Tong; Jianyong Li; Max Totrov; Jeffrey R. Bloomquist

The widespread emergence of pyrethroid-resistant Anopheles gambiae has intensified the need to find new contact mosquitocides for indoor residual spraying and insecticide treated nets. With the goal of developing new species-selective and resistance-breaking acetylcholinesterase (AChE)-inhibiting mosquitocides, in this report we revisit the effects of carbamate substitution on aryl carbamates, and variation of the 1-alkyl group on pyrazol-4-yl methylcarbamates. Compared to aryl methylcarbamates, aryl dimethylcarbamates were found to have lower selectivity for An. gambiae AChE (AgAChE) over human AChE (hAChE), but improved tarsal contact toxicity to G3 strain An. gambiae. Molecular modeling studies suggest the lower species-selectivity of the aryl dimethylcarbamates can be attributed to a less flexible acyl pocket in AgAChE relative to hAChE. The improved tarsal contact toxicity of the aryl dimethylcarbamates relative to the corresponding methylcarbamates is attributed to a range of complementary phenomena. With respect to the pyrazol-4-yl methylcarbamates, the previously observed low An. gambiae-selectivity of compounds bearing α-branched 1-alkyl groups was improved by employing β- and γ-branched 1-alkyl groups. Compounds 22a (cyclopentylmethyl), 21a (cyclobutylmethyl), and 26a (3-methylbutyl) offer 250-fold, 120-fold, and 96-fold selectivity, respectively, for inhibition of AgAChE vs. hAChE. Molecular modeling studies suggests the high species-selectivity of these compounds can be attributed to the greater mobility of the W84 side chain in the choline-binding site of AgAChE, compared to that of W86 in hAChE. Compound 26a has reasonable contact toxicity to G3 strain An. gambiae (LC50 = 269 μg/mL) and low cross-resistance to Akron strain (LC50 = 948 μg/mL), which bears the G119S resistance mutation.


Archives of Insect Biochemistry and Physiology | 2013

NEUROTOXICOLOGY OF bis(n)-TACRINES ON Blattella germanica AND Drosophila melanogaster ACETYLCHOLINESTERASE

James M. Mutunga; Dhana Raj Boina; Troy D. Anderson; Jeffrey R. Bloomquist; Paul R. Carlier; Dawn M. Wong; Polo C.-H. Lam; Maxim Totrov

A series of bis(n)-tacrines were used as pharmacological probes of the acetylcholinesterase (AChE) catalytic and peripheral sites of Blattella germanica and Drosophila melanogaster, which express AChE-1 and AChE-2 isoforms, respectively. In general, the potency of bis(n)-tacrines was greater in D. melanogaster AChE (DmAChE) than in B. germanica AChE (BgAChE). The change in potency with tether length was high in DmAChE and low in BgAChE, associated with 90-fold and 5.2-fold maximal potency gain, respectively, compared to the tacrine monomer. The optimal tether length for Blattella was 8 carbons and for Drosophila was 10 carbons. The two species differed by only about twofold in their sensitivity to tacrine monomer, indicating that differential potency occurred among dimeric bis(n)-tacrines due to structural differences in the peripheral site. Multiple sequence alignment and in silico homology modeling suggest that aromatic residues of DmAChE confer higher affinity binding, and the lack of same at the BgAChE peripheral site may account, at least in part, to the greater overall sensitivity of DmAChE to bis(n)-tacrines, as reflected by in vitro assay data. Topical and injection assays in cockroaches found minimal toxicity of bis(n)-tacrines. Electrophysiological studies on D. melanogaster central nervous system showed that dimeric tacrines do not readily cross the blood brain barrier, explaining the observed nonlethality to insects. Although the bis(n)-tacrines were not good insecticide candidates, the information obtained in this study should aid in the design of selective bivalent ligands targeting insect, pests, and disease vectors.


Journal of Medicinal Chemistry | 2006

Complexes of Alkylene-Linked Tacrine Dimers with Torpedo Californica Acetylcholinesterase: Binding of Bis(5)-Tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge.

Edwin H. Rydberg; Boris Brumshtein; Harry M. Greenblatt; Dawn M. Wong; David Shaya; Larry D. Williams; Paul R. Carlier; Yuan Ping Pang; Israel Silman; Joel L. Sussman

Collaboration


Dive into the Dawn M. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Israel Silman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Joel L. Sussman

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge