Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn Song is active.

Publication


Featured researches published by Dawn Song.


ieee symposium on security and privacy | 2003

Random key predistribution schemes for sensor networks

Haowen Chan; Adrian Perrig; Dawn Song

Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the framework of pre-distributing a random set of keys to each node. First, in the q-composite keys scheme, we trade off the unlikeliness of a large-scale network attack in order to significantly strengthen random key predistributions strength against smaller-scale attacks. Second, in the multipath-reinforcement scheme, we show how to strengthen the security between any two nodes by leveraging the security of other links. Finally, we present the random-pairwise keys scheme, which perfectly preserves the secrecy of the rest of the network when any node is captured, and also enables node-to-node authentication and quorum-based revocation.


ieee symposium on security and privacy | 2000

Practical techniques for searches on encrypted data

Dawn Song; David A. Wagner; Adrian Perrig

It is desirable to store data on data storage servers such as mail servers and file servers in encrypted form to reduce security and privacy risks. But this usually implies that one has to sacrifice functionality for security. For example, if a client wishes to retrieve only documents containing certain words, it was not previously known how to let the data storage server perform the search and answer the query, without loss of data confidentiality. We describe our cryptographic schemes for the problem of searching on encrypted data and provide proofs of security for the resulting crypto systems. Our techniques have a number of crucial advantages. They are provably secure: they provide provable secrecy for encryption, in the sense that the untrusted server cannot learn anything about the plaintext when only given the ciphertext; they provide query isolation for searches, meaning that the untrusted server cannot learn anything more about the plaintext than the search result; they provide controlled searching, so that the untrusted server cannot search for an arbitrary word without the users authorization; they also support hidden queries, so that the user may ask the untrusted server to search for a secret word without revealing the word to the server. The algorithms presented are simple, fast (for a document of length n, the encryption and search algorithms only need O(n) stream cipher and block cipher operations), and introduce almost no space and communication overhead, and hence are practical to use today.


computer and communications security | 2007

Provable data possession at untrusted stores

Giuseppe Ateniese; Randal C. Burns; Reza Curtmola; Joseph Herring; Lea Kissner; Zachary N. J. Peterson; Dawn Song

We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the server, which drastically reduces I/O costs. The client maintains a constant amount of metadata to verify the proof. The challenge/response protocol transmits a small, constant amount of data, which minimizes network communication. Thus, the PDP model for remote data checking supports large data sets in widely-distributed storage system. We present two provably-secure PDP schemes that are more efficient than previous solutions, even when compared with schemes that achieve weaker guarantees. In particular, the overhead at the server is low (or even constant), as opposed to linear in the size of the data. Experiments using our implementation verify the practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by cryptographic computation.


information processing in sensor networks | 2004

The Sybil attack in sensor networks: analysis & defenses

James Newsome; Elaine Shi; Dawn Song; Adrian Perrig

Security is important for many sensor network applications. A particularly harmful attack against sensor and ad hoc networks is known as the Sybil attack based on J.R. Douceur (2002), where a node illegitimately claims multiple identities. This paper systematically analyzes the threat posed by the Sybil attack to wireless sensor networks. We demonstrate that the attack can be exceedingly detrimental to many important functions of the sensor network such as routing, resource allocation, misbehavior detection, etc. We establish a classification of different types of the Sybil attack, which enables us to better understand the threats posed by each type, and better design countermeasures against each type. We then propose several novel techniques to defend against the Sybil attack, and analyze their effectiveness quantitatively.


ieee symposium on security and privacy | 2000

Efficient authentication and signing of multicast streams over lossy channels

Adrian Perrig; Ran Canetti; J. D. Tygar; Dawn Song

Multicast stream authentication and signing is an important and challenging problem. Applications include the continuous authentication of radio and TV Internet broadcasts, and authenticated data distribution by satellite. The main challenges are fourfold. First, authenticity must be guaranteed even when only the sender of the data is trusted. Second, the scheme needs to scale to potentially millions of receivers. Third, streamed media distribution can have high packet loss. Finally the system needs to be efficient to support fast packet rates. We propose two efficient schemes, TESLA and EMSS, for secure lossy multicast streams. TESLA (Timed Efficient Stream Loss-tolerant Authentication), offers sender authentication, strong loss robustness, high scalability and minimal overhead at the cost of loose initial time synchronization and slightly delayed authentication. EMSS (Efficient Multi-chained Stream Signature), provides nonrepudiation of origin, high loss resistance, and low overhead, at the cost of slightly delayed verification.


computer and communications security | 2011

Android permissions demystified

Adrienne Porter Felt; Erika Chin; Steve Hanna; Dawn Song; David A. Wagner

Android provides third-party applications with an extensive API that includes access to phone hardware, settings, and user data. Access to privacy- and security-relevant parts of the API is controlled with an install-time application permission system. We study Android applications to determine whether Android developers follow least privilege with their permission requests. We built Stowaway, a tool that detects overprivilege in compiled Android applications. Stowaway determines the set of API calls that an application uses and then maps those API calls to permissions. We used automated testing tools on the Android API in order to build the permission map that is necessary for detecting overprivilege. We apply Stowaway to a set of 940 applications and find that about one-third are overprivileged. We investigate the causes of overprivilege and find evidence that developers are trying to follow least privilege but sometimes fail due to insufficient API documentation.


security of ad hoc and sensor networks | 2007

SIA: Secure information aggregation in sensor networks

Haowen Chan; Adrian Perrig; Bartosz Przydatek; Dawn Song

In sensor networks, data aggregation is a vital primitive enabling efficient data queries. An on-site aggregator device collects data from sensor nodes and produces a condensed summary which is forwarded to the off-site querier, thus reducing the communication cost of the query. Since the aggregator is on-site, it is vulnerable to physical compromise attacks. A compromised aggregator may report false aggregation results. Hence, it is essential that techniques are available to allow the querier to verify the integrity of the result returned by the aggregator node. We propose a novel framework for secure information aggregation in sensor networks. By constructing efficient random sampling mechanisms and interactive proofs, we enable the querier to verify that the answer given by the aggregator is a good approximation of the true value, even when the aggregator and a fraction of the sensor nodes are corrupted. In particular, we present efficient protocols for secure computation of the median and average of the measurements, for the estimation of the network size, for finding the minimum and maximum sensor reading, and for random sampling and leader election. Our protocols require only sublinear communication between the aggregator and the user.


ieee symposium on security and privacy | 2005

Semantics-aware malware detection

Mihai Christodorescu; Somesh Jha; Sanjit A. Seshia; Dawn Song; Randal E. Bryant

A malware detector is a system that attempts to determine whether a program has malicious intent. In order to evade detection, malware writers (hackers) frequently use obfuscation to morph malware. Malware detectors that use a pattern-matching approach (such as commercial virus scanners) are susceptible to obfuscations used by hackers. The fundamental deficiency in the pattern-matching approach to malware detection is that it is purely syntactic and ignores the semantics of instructions. In this paper, we present a malware-detection algorithm that addresses this deficiency by incorporating instruction semantics to detect malicious program traits. Experimental evaluation demonstrates that our malware-detection algorithm can detect variants of malware with a relatively low run-time overhead. Moreover our semantics-aware malware detection algorithm is resilient to common obfuscations used by hackers.


ieee symposium on security and privacy | 2005

Polygraph: automatically generating signatures for polymorphic worms

James Newsome; Brad Karp; Dawn Song

It is widely believed that content-signature-based intrusion detection systems (IDS) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content substrings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives.


international conference on information systems security | 2008

BitBlaze: A New Approach to Computer Security via Binary Analysis

Dawn Song; David Brumley; Heng Yin; Juan Caballero; Ivan Jager; Min Gyung Kang; Zhenkai Liang; James Newsome; Pongsin Poosankam; Prateek Saxena

In this paper, we give an overview of the BitBlaze project, a new approach to computer security via binary analysis. In particular, BitBlaze focuses on building a unified binary analysis platform and using it to provide novel solutions to a broad spectrum of different security problems. The binary analysis platform is designed to enable accurate analysis, provide an extensible architecture, and combines static and dynamic analysis as well as program verification techniques to satisfy the common needs of security applications. By extracting security-related properties from binary programs directly, BitBlaze enables a principled, root-cause based approach to computer security, offering novel and effective solutions, as demonstrated with over a dozen different security applications.

Collaboration


Dive into the Dawn Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Shi

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

James Newsome

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

David Brumley

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Pongsin Poosankam

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Yin

University of California

View shared research outputs
Top Co-Authors

Avatar

Chang Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Bo Li

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge