Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daxi Sun is active.

Publication


Featured researches published by Daxi Sun.


Molecular and Cellular Biology | 2004

Mrp4 Confers Resistance to Topotecan and Protects the Brain from Chemotherapy

Markos Leggas; Masashi Adachi; George L. Scheffer; Daxi Sun; Peter R. Wielinga; Guoqing Du; Kelly E. Mercer; Yanli Zhuang; John C. Panetta; Brad Johnston; Rik J. Scheper; Clinton F. Stewart; John D. Schuetz

ABSTRACT The role of the multidrug resistance protein MRP4/ABCC4 in vivo remains undefined. To explore this role, we generated Mrp4-deficient mice. Unexpectedly, these mice showed enhanced accumulation of the anticancer agent topotecan in brain tissue and cerebrospinal fluid (CSF). Further studies demonstrated that topotecan was an Mrp4 substrate and that cells overexpressing Mrp4 were resistant to its cytotoxic effects. We then used new antibodies to discover that Mrp4 is unique among the anionic ATP-dependent transporters in its dual localization at the basolateral membrane of the choroid plexus epithelium and in the apical membrane of the endothelial cells of the brain capillaries. Microdialysis sampling of ventricular CSF demonstrated that localization of Mrp4 at the choroid epithelium is integral to its function in limiting drug penetration into the CSF. The topotecan resistance of cells overexpressing Mrp4 and the polarized expression of Mrp4 in the choroid plexus and brain capillary endothelial cells indicate that Mrp4 has a dual role in protecting the brain from cytotoxins and suggest that the therapeutic efficacy of central nervous system-directed drugs that are Mrp4 substrates may be improved by developing Mrp4 inhibitors.


Nature | 2006

Identification of a mammalian mitochondrial porphyrin transporter

Partha Krishnamurthy; Guoqing Du; Yu Fukuda; Daxi Sun; Janardhan Sampath; Kelly E. Mercer; Junfeng Wang; Beatriz Sosa-Pineda; K. Gopal Murti; John D. Schuetz

The movement of anionic porphyrins (for example, haem) across intracellular membranes is crucial to many biological processes, but their mitochondrial translocation and coordination with haem biosynthesis is not understood. Transport of porphyrins into isolated mitochondria is energy-dependent, as expected for the movement of anions into a negatively charged environment. ATP-binding cassette transporters actively facilitate the transmembrane movement of substances. We found that the mitochondrial ATP-binding cassette transporter ABCB6 is upregulated (messenger RNA and protein in human and mouse cells) by elevation of cellular porphyrins and postulated that ABCB6 has a function in porphyrin transport. We also predicted that ABCB6 is functionally linked to haem biosynthesis, because its mRNA is found in both human bone marrow and CD71+ early erythroid cells (by database searching), and because our results show that ABCB6 is highly expressed in human fetal liver, and Abcb6 in mouse embryonic liver. Here we demonstrate that ABCB6 is uniquely located in the outer mitochondrial membrane and is required for mitochondrial porphyrin uptake. After ABCB6 is upregulated in response to increased intracellular porphyrin, mitochondrial porphyrin uptake activates de novo porphyrin biosynthesis. This process is blocked when the Abcb6 gene is silenced. Our results challenge previous assumptions about the intracellular movement of porphyrins and the factors controlling haem biosynthesis.


Journal of Biological Chemistry | 2004

Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice

Mahfoud Assem; E G Schuetz; Markos Leggas; Daxi Sun; Kazuto Yasuda; Glen Reid; Noam Zelcer; Masashi Adachi; Stephen C. Strom; Ronald M. Evans; David D. Moore; Piet Borst; John D. Schuetz

The ABC transporter, Mrp4, transports the sulfated steroid DHEA-s, and sulfated bile acids interact with Mrp4 with high affinity. Hepatic Mrp4 levels are low, but increase under cholestatic conditions. We therefore inferred that up-regulation of Mrp4 during cholestasis is a compensatory mechanism to protect the liver from accumulation of hydrophobic bile acids. We determined that the nuclear receptor CAR is required to coordinately up-regulate hepatic expression of Mrp4 and an enzyme known to sulfate hydroxy-bile acids and steroids, Sult2a1. CAR activators increased Mrp4 and Sult2a1 expression in primary human hepatocytes and HepG2, a human liver cell line. Sult2a1 was down-regulated in Mrp4-null mice, further indicating an inter-relation between Mrp4 and Sult2a1 gene expression. Based on the hydrophilic nature of sulfated bile acids and the Mrp4 capability to transport sulfated steroids, our findings suggest that Mrp4 and Sult2a1 participate in an integrated pathway mediating elimination of sulfated steroid and bile acid metabolites from the liver.


Journal of Biological Chemistry | 2001

Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1.

Janardhan Sampath; Daxi Sun; Vincent J. Kidd; Jose Grenet; Amisha Gandhi; Linda H. Shapiro; Qingjian Wang; Gerard P. Zambetti; John D. Schuetz

The most frequently expressed drug resistance genes, MDR1 and MRP1, occur in human tumors with mutant p53. However, it was unknown if mutant p53 transcriptionally regulated both MDR1 and MRP1. We demonstrated that mutant p53 did not activate either theMRP1 promoter or the endogenous gene. In contrast, mutant p53 strongly up-regulated the MDR1 promoter and expression of the endogenous MDR1 gene. Notably, cells that expressed either a transcriptionally inactive mutant p53 or the empty vector showed no endogenous MDR1 up-regulation. Transcriptional activation of the MDR1 promoter by mutant p53 required anEts binding site, and mutant p53 and Ets-1 synergistically activated MDR1 transcription. Biochemical analysis revealed that Ets-1 interacted exclusively with mutant p53s in vivobut not with wild-type p53. These findings are the first to demonstrate the induction of endogenous MDR1 by mutant p53 and provide insight into the mechanism.


Molecular and Cellular Biology | 1998

The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein.

Bart Lutterbach; Daxi Sun; John D. Schuetz; Scott W. Hiebert

ABSTRACT Chromosomal translocations in acute leukemia that affect the AML-1/CBFβ transcription factor complex create dominant inhibitory proteins. However, the mechanisms by which these proteins act remain obscure. Here we demonstrate that the multidrug resistance 1 (MDR-1) promoter is a target for AML/ETO transcriptional repression. This repression is of basal, not activated, expression from the MDR-1 promoter and thus represents a new mechanism for AML/ETO function. We have defined two domains in AML/ETO that are required for repression of basal transcription from the MDR-1 promoter: a hydrophobic heptad repeat (HHR) motif and a conserved zinc finger (ZnF) domain termed the MYND domain. The HHR mediates formation of AML/ETO homodimers and AML/ETO-ETO heterodimers. Single serine substitutions at conserved cysteine residues within the predicted ZnFs also abrogate transcriptional repression. Finally, we observe that AML/ETO can also inhibit Ets-1 activation of the MDR-1 promoter, indicating that AML/ETO can disrupt both basal and Ets-1-dependent transcription. The fortuitous inhibition of MDR-1 expression in t(8;21)-containing leukemias may contribute to the favorable response of these patients to chemotherapeutic drugs.


Journal of Biological Chemistry | 1999

SP1 AND EGR-1 HAVE OPPOSING EFFECTS ON THE REGULATION OF THE RAT PGP2/MDR1B GENE

Jaideep V. Thottassery; Daxi Sun; Gerard P. Zambetti; Amber Troutman; Vikas P. Sukhatme; Erin G. Schuetz; John D. Schuetz

The promoter of the rat pgp2/mdr1bgene has a GC-rich region (pgp2GC) that is highly conserved inmdr genes and contains an consensus Sp1 site. Sp1’s role in transactivation of the pgp2/mdr1b promoter was tested inDrosophila Schneider cells. The pgp2/mdr1bpromoter was strongly activated by co-transfected wild type Sp1 but not mutant Sp1 and mutation of the Sp1 site abrogated Sp1-dependent transactivation. In gel shift assays, the same mutations abolished Sp1-DNA complex formation. Moreover, basal activity of the pgp2/mdr1b Sp1 mutant promoter was dramatically lower. Enforced ectopic overexpression of Sp1 in H35 rat hepatoma cells revealed that cell lines overexpressing Sp1 had increased endogenous pgp2/mdr1b mRNA, demonstrating that Sp1 activates the endogenous pgp2/mdr1b gene. Pgp2GC oligonucleotide also bound Egr-1 in gel shift assays and Egr-1 competitively displaced bound Sp1. In transient transfections of H35 cells (and human LS180 and HepG2 cells) Egr-1 potently and specifically suppressed pgp2/mdr1b promoter activity and mutations in the Egr-1 site decreased Egr-1 binding and correlated withpgp2/mdr1b up-regulation. Ectopic overexpression of Egr-1 in H35 cells decreased Pgp expression and selectively increased vinblastine sensitivity. In conclusion, Sp1 positively regulates while Egr-1 negatively regulates the rat pgp2/mdr1b gene. Moreover, competitive interactions between Sp1 and Egr-1 in all likelihood determine the constitutive expression of thepgp2/mdr1b gene in H35 cells.


Pharmaceutical Research | 1997

Promoter and Intronic Sequences of the Human Thiopurine S-Methyltransferase (TPMT) Gene Isolated from a Human Pacl Genomic Library

Eugene Y. Krynetski; Michael Y. Fessing; Charles R. Yates; Daxi Sun; John D. Schuetz; William E. Evans

AbstractPurpose. To isolate and characterize the polymorphic human thiopurine S-methyltransferase (TPMT) gene. Methods. The human TPMT gene was isolated by PCR screening of a phage artificial chromosome (PAC) library, using exon- and intron-specific primers, then mapped and sequenced. Results. Two separate PAC1 clones were isolated that contained the same 25 kb gene with 9 exons encompassing the entire TPMT open reading frame. Structural characterization revealed distinct differences when compared to a TPMT gene previously isolated from a chromosome 6-specific human genomic library; the 5′-flanking region (putative promoter) contains 17 additional nucleotides located at position-77 upstream from the transcription start site, in addition to several nucleotide sequence differences, and intron 8 is only 1.6 kb, 5 kb shorter than previously reported. Southern and PCR analyses of genomic DNA from 18 unrelated individuals revealed only the TPMT gene structure corresponding to the PAC clones we isolated. Analysis of the TPMT promoter activity using the 5′-terminal region confirmed transcriptional activity in human HepG2 and CCRF-CEM cells. The 5′-flank is 71% GC rich and does not contain consensus sequences for TATA box or CCAAT elements. FISH analysis demonstrated the presence of the TPMT-homologous sequence on the short arm of chromosome 6 (sublocalized to 6p22). Conclusions. These findings establish the genomic structure of the human TPMT gene, revealing differences in the promoter and intronic sequences compared to that previously reported and providing a basis for future studies to further elucidate its biological function and regulation.


Journal of Biological Chemistry | 2012

ATP-dependent Mitochondrial Porphyrin Importer ABCB6 Protects against Phenylhydrazine Toxicity

Dagny Ulrich; John R. Lynch; Yao Wang; Yu Fukuda; Deepa Nachagari; Guoqing Du; Daxi Sun; Yiping Fan; Lyudmila Tsurkan; Philip M. Potter; Jerold E. Rehg; John D. Schuetz

Background: The role of the mitochondrial ABC transporter, Abcb6, in vivo is unknown. Results: Abcb6-null mice are incapable of ATP-dependent import of mitochondrial porphyrins. Despite compensatory changes in the porphyrin pathway, Abcb6-null mice are less viable after a porphyrin-inducing stress. Conclusion: Abcb6 absence abolished ATP-dependent mitochondrial porphyrin uptake and deregulated porphyrin pathway genes. Significance: Disrupted Abcb6 function may produce porphyria after certain stresses. Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6+/−) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6−/− mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6−/− mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6−/− mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.


Oncogene | 2001

Mdr1b facilitates p53-mediated cell death and p53 is required for Mdr1b upregulation in vivo.

Valerie Lecureur; Jaideep V. Thottassery; Daxi Sun; Erin G. Schuetz; Jill M. Lahti; Gerard P. Zambetti; John D. Schuetz

The mdr1b gene is thought to be a “stress-responsive” gene, however it is unknown if this gene is regulated by p53 in the whole animal. Moreover, it is unknown if overexpression of mdr1b affects cell survival. The dependence of mdr1b upon p53 for upregulation was evaluated in p53 knockout mice. Wild-type (wt) or p53−/− mice were treated singly or in combination with gamma irradiation (IR) and/or the potent DNA damaging agent, diethylnitrosoamine (DEN). Both IR and DEN induced mdr1b in wild-type animals, but not in the p53−/− mice. IR also upregulated endogenous mdr1b in the H35 liver cell line, and the mdr1b promoter was activated by IR and activation correlated with p53 levels; moreover activation required an intact p53 binding site. Colony survival studies revealed that co-transfection of both mdr1b and p53 dramatically reduced colony numbers compared to cells transfected with either p53 or mdr1b alone and cells microinjected with both mdr1b and p53 had a more dramatic loss in viability compared to cells injected with either expression vector alone. Further studies using acridine orange and ethidium bromide to measure apoptosis revealed that mdr1b caused apoptosis and this was enhanced by p53, however the increased apoptosis required a functional p53 transactivation domain. These studies indicate that mdr1b is a downstream target of p53 in the whole animal and expression of mdr1b facilitates p53-mediated cell death.


Cancer Research | 2011

Deoxycytidine Kinase Modulates the Impact of the ABC Transporter ABCG2 on Clofarabine Cytotoxicity

Shinjiro Nagai; Kazumasa Takenaka; Deepa Nachagari; Charles Rose; Kali Domoney; Daxi Sun; Alex Sparreboom; John D. Schuetz

Purine nucleoside antimetabolites, such as clofarabine, are effective antileukemic agents. However, their effectiveness depends on an initial activation step in which they are monophosphorylated by deoxycytidine kinase (dCK). Some purine nucleoside antimetabolites and their monophosphate derivatives are exported by the ABC transporter ABCG2. Because clofarabine is a dCK substrate, and we show substantial variation in dCK and ABCG2 in myeloid leukemia, we hypothesized that the activity of dCK may modulate ABCG2-mediated resistance to clofarabine by regulating the formation of clofarabine monophosphate. We show that ABCG2 influence on clofarabine cytotoxicity was markedly influenced by dCK activity. When dCK expression was reduced by siRNA, clofarabine cytotoxicity was strongly reduced by enhanced ABCG2-mediated efflux. Conversely, dCK overexpression blunted ABCG2-mediated efflux of clofarabine by increasing the formation of clofarabine nucleotides. The use of an ABCG2 inhibitor confirmed that ABCG2 export of clofarabine is maximal when dCK levels are minimal. Analysis of intracellular clofarabine metabolites suggested that ABCG2 exported clofarabine more readily than clofarabine monophosphate. That ABCG2 primarily effluxes clofarabine, but not chlorfarabine-monophosphate, was confirmed by HPLC analysis of drug exported from ABCG2-overexpressing cells. Because the level and function of dCK and ABCG2 vary substantially among other types of cancer, these findings have important implications not only for clofarabine therapy but for purine nucleoside therapy in general. Therefore, we propose that addition of ABCG2 inhibitors would effectively increase the antitumor efficacy of purine nucleosides by blocking drug efflux that may be a significant mode of resistance when dCK levels are low.

Collaboration


Dive into the Daxi Sun's collaboration.

Top Co-Authors

Avatar

John D. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Erin G. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Masashi Adachi

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Markos Leggas

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Guoqing Du

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Deepa Nachagari

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Gerard P. Zambetti

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jaideep V. Thottassery

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Janardhan Sampath

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge