Dayan B. Goodenowe
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dayan B. Goodenowe.
Journal of Lipid Research | 2007
Dayan B. Goodenowe; Lisa Cook; Jun Liu; Yingshen Lu; Dushmanthi Jayasinghe; Pearson W. K. Ahiahonu; Doug Heath; Yasuyo Yamazaki; John Flax; Kevin Krenitsky; Sparks Dl; Alan J. Lerner; Robert P. Friedland; Takashi Kudo; Kouzin Kamino; Takashi Morihara; Masatoshi Takeda; Paul L. Wood
Although dementia of the Alzheimers type (DAT) is the most common form of dementia, the severity of dementia is only weakly correlated with DAT pathology. In contrast, postmortem measurements of cholinergic function and membrane ethanolamine plasmalogen (PlsEtn) content in the cortex and hippocampus correlate with the severity of dementia in DAT. Currently, the largest risk factor for DAT is age. Because the synthesis of PlsEtn occurs via a single nonredundant peroxisomal pathway that has been shown to decrease with age and PlsEtn is decreased in the DAT brain, we investigated potential relationships between serum PlsEtn levels, dementia severity, and DAT pathology. In total, serum PlsEtn levels were measured in five independent population collections comprising >400 clinically demented and >350 nondemented subjects. Circulating PlsEtn levels were observed to be significantly decreased in serum from clinically and pathologically diagnosed DAT subjects at all stages of dementia, and the severity of this decrease correlated with the severity of dementia. Furthermore, a linear regression model predicted that serum PlsEtn levels decrease years before clinical symptoms. The putative roles that PlsEtn biochemistry play in the etiology of cholinergic degeneration, amyloid accumulation, and dementia are discussed.
BMC Medicine | 2010
Shawn Ritchie; Pearson W. K. Ahiahonu; Dushmanthi Jayasinghe; Doug Heath; Jun-Jun Liu; Yingshen Lu; Wei Jin; Amir Kavianpour; Yasuyo Yamazaki; Amin Khan; Khine Khine Su-Myat; Paul L. Wood; Kevin Krenitsky; Ichiro Takemasa; Masakazu Miyake; Mitsugu Sekimoto; Morito Monden; Hisahiro Matsubara; Fumio Nomura; Dayan B. Goodenowe
BackgroundThere are currently no accurate serum markers for detecting early risk of colorectal cancer (CRC). We therefore developed a non-targeted metabolomics technology to analyse the serum of pre-treatment CRC patients in order to discover putative metabolic markers associated with CRC. Using tandem-mass spectrometry (MS/MS) high throughput MS technology we evaluated the utility of selected markers and this technology for discriminating between CRC and healthy subjects.MethodsBiomarker discovery was performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Comprehensive metabolic profiles of CRC patients and controls from three independent populations from different continents (USA and Japan; total n = 222) were obtained and the best inter-study biomarkers determined. The structural characterization of these and related markers was performed using liquid chromatography (LC) MS/MS and nuclear magnetic resonance technologies. Clinical utility evaluations were performed using a targeted high-throughput triple-quadrupole multiple reaction monitoring (TQ-MRM) method for three biomarkers in two further independent populations from the USA and Japan (total n = 220).ResultsComprehensive metabolomic analyses revealed significantly reduced levels of 28-36 carbon-containing hydroxylated polyunsaturated ultra long-chain fatty-acids in all three independent cohorts of CRC patient samples relative to controls. Structure elucidation studies on the C28 molecules revealed two families harbouring specifically two or three hydroxyl substitutions and varying degrees of unsaturation. The TQ-MRM method successfully validated the FTICR-MS results in two further independent studies. In total, biomarkers in five independent populations across two continental regions were evaluated (three populations by FTICR-MS and two by TQ-MRM). The resultant receiver-operator characteristic curve AUCs ranged from 0.85 to 0.98 (average = 0.91 ± 0.04).ConclusionsA novel comprehensive metabolomics technology was used to identify a systemic metabolic dysregulation comprising previously unknown hydroxylated polyunsaturated ultra-long chain fatty acid metabolites in CRC patients. These metabolites are easily measurable in serum and a decrease in their concentration appears to be highly sensitive and specific for the presence of CRC, regardless of ethnic or geographic background. The measurement of these metabolites may represent an additional tool for the early detection and screening of CRC.
Metabolomics | 2006
Rainer Breitling; Shawn Ritchie; Dayan B. Goodenowe; Mhairi Stewart; Michael P. Barrett
Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2009
Elodie Pastural; Shawn Ritchie; Yingshen Lu; Wei Jin; Amir Kavianpour; Khine Khine Su-Myat; Doug Heath; Paul L. Wood; Maura Fisk; Dayan B. Goodenowe
Autism is a neurological disorder that manifests as noticeable behavioral and developmental abnormalities predominantly in males between the ages of 2 and 10. Although the genetics, biochemistry and neuropathology of this disease have been extensively studied, underlying causal factors to this disease have remained elusive. Using a longitudinal trial design in which three plasma samples were collected from 15 autistic and 12 non-autistic age-matched controls over the course of 1 year, universal and unambiguous alterations in lipid metabolism were observed. Biomarkers of fatty acid elongation and desaturation (poly-unsaturated long chain fatty acids (PUFA) and/or saturated very long chain fatty acids (VLCFA)-containing ethanolamine phospholipids) were statistically elevated in all autistic subjects. In all 8 of the affected/non-affected sibling pairs, the affected sibling had higher levels of these biomarkers than the unaffected sibling. Exposure of neurons, astrocytes and hepatocytes in vitro to elevated extracellular glutamate levels resulted in lipid biomarker changes indistinguishable from those observed in autistic subjects. Glutamate stress also resulted in in vitro decreased levels of reduced glutathione (GSH), methionine and cysteine, in a similar way to the decreases we observed in autism plasma. Impaired mitochondrial fatty acid oxidation, elevated plasma VLCFAs, and glutamate toxicity as putative causal factors in the biochemistry, neuropathology, and gender bias in autism are discussed.
Plant and Cell Physiology | 2013
Mami Yamazaki; Keiichi Mochida; Takashi Asano; Ryo Nakabayashi; Motoaki Chiba; Nirin Udomson; Yasuyo Yamazaki; Dayan B. Goodenowe; Ushio Sankawa; Takuhiro Yoshida; Atsushi Toyoda; Yasushi Totoki; Yoshiyuki Sakaki; Elsa Góngora-Castillo; C. Robin Buell; Tetsuya Sakurai; Kazuki Saito
The Rubiaceae species, Ophiorrhiza pumila, accumulates camptothecin, an anti-cancer alkaloid with a potent DNA topoisomerase I inhibitory activity, as well as anthraquinones that are derived from the combination of the isochorismate and hemiterpenoid pathways. The biosynthesis of these secondary products is active in O. pumila hairy roots yet very low in cell suspension culture. Deep transcriptome analysis was conducted in O. pumila hairy roots and cell suspension cultures using the Illumina platform, yielding a total of 2 Gb of sequence for each sample. We generated a hybrid transcriptome assembly of O. pumila using the Illumina-derived short read sequences and conventional Sanger-derived expressed sequence tag clones derived from a full-length cDNA library constructed using RNA from hairy roots. Among 35,608 non-redundant unigenes, 3,649 were preferentially expressed in hairy roots compared with cell suspension culture. Candidate genes involved in the biosynthetic pathway for the monoterpenoid indole alkaloid camptothecin were identified; specifically, genes involved in post-strictosamide biosynthetic events and genes involved in the biosynthesis of anthraquinones and chlorogenic acid. Untargeted metabolomic analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) indicated that most of the proposed intermediates in the camptothecin biosynthetic pathway accumulated in hairy roots in a preferential manner compared with cell suspension culture. In addition, a number of anthraquinones and chlorogenic acid preferentially accumulated in hairy roots compared with cell suspension culture. These results suggest that deep transcriptome and metabolome data sets can facilitate the identification of genes and intermediates involved in the biosynthesis of secondary products including camptothecin in O. pumila.
BMC Cancer | 2013
Shawn Ritchie; Hirofumi Akita; Ichiro Takemasa; Hidetoshi Eguchi; Elodie Pastural; Hiroaki Nagano; Morito Monden; Yuichiro Doki; Masaki Mori; Wei Jin; Tolulope T. Sajobi; Dushmanthi Jayasinghe; Bassirou Chitou; Yasuyo Yamazaki; Thayer White; Dayan B. Goodenowe
BackgroundThe prognosis of pancreatic cancer (PC) is one of the poorest among all cancers, due largely to the lack of methods for screening and early detection. New biomarkers for identifying high-risk or early-stage subjects could significantly impact PC mortality. The goal of this study was to find metabolic biomarkers associated with PC by using a comprehensive metabolomics technology to compare serum profiles of PC patients to healthy control subjects.MethodsA non-targeted metabolomics approach based on high-resolution, flow-injection Fourier transform ion cyclotron resonance mass spectrometry (FI-FTICR-MS) was used to generate comprehensive metabolomic profiles containing 2478 accurate mass measurements from the serum of Japanese PC patients (n=40) and disease-free subjects (n=50). Targeted flow-injection tandem mass spectrometry (FI-MS/MS) assays for specific metabolic systems were developed and used to validate the FI-FTICR-MS results. A FI-MS/MS assay for the most discriminating metabolite discovered by FI-FTICR-MS (PC-594) was further validated in two USA Caucasian populations; one comprised 14 PCs, six intraductal papillary mucinous neoplasims (IPMN) and 40 controls, and a second comprised 1000 reference subjects aged 30 to 80, which was used to create a distribution of PC-594 levels among the general population.ResultsFI-FTICR-MS metabolomic analysis showed significant reductions in the serum levels of metabolites belonging to five systems in PC patients compared to controls (all p<0.000025). The metabolic systems included 36-carbon ultra long-chain fatty acids, multiple choline-related systems including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, as well as vinyl ether-containing plasmalogen ethanolamines. ROC-AUCs based on FI-MS/MS of selected markers from each system ranged between 0.93 ±0.03 and 0.97 ±0.02. No significant correlations between any of the systems and disease-stage, gender, or treatment were observed. Biomarker PC-594 (an ultra long-chain fatty acid), was further validated using an independently-collected US Caucasian population (blinded analysis, n=60, p=9.9E-14, AUC=0.97 ±0.02). PC-594 levels across 1000 reference subjects showed an inverse correlation with age, resulting in a drop in the AUC from 0.99 ±0.01 to 0.90 ±0.02 for subjects aged 30 to 80, respectively. A PC-594 test positivity rate of 5.0% in low-risk reference subjects resulted in a PC sensitivity of 87% and a significant improvement in net clinical benefit based on decision curve analysis.ConclusionsThe serum metabolome of PC patients is significantly altered. The utility of serum metabolite biomarkers, particularly PC-594, for identifying subjects with elevated risk of PC should be further investigated.
Lipids in Health and Disease | 2010
Rishikesh Mankidy; Pearson W. K. Ahiahonu; Hong Ma; Dushmanthi Jayasinghe; Shawn Ritchie; Mohamed A. Khan; Khine Khine Su-Myat; Paul L. Wood; Dayan B. Goodenowe
BackgroundDisrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimers disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer.ResultsUsing plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition.ConclusionThe present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.
Lipids in Health and Disease | 2011
Paul L. Wood; M. Amin Khan; Tara Smith; Greg Ehrmantraut; Wei Jin; Wei Cui; Nancy Braverman; Dayan B. Goodenowe
BackgroundChildhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids) are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011) to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1) and rhizomelic chrondrodysplasia punctata type 2 (RCDP2) lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD) lymphocytes which possess a proteolipid protein-1 (PLP1) missense mutation that results in abnormal PLP1 folding and its accumulation in the endoplasmic reticulum (ER), the cellular site of the last steps in plasmalogen synthesis. In vivo incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency.ResultsIn both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6) in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver.ConclusionsOur data demonstrate that PPI-1011 is activated (removal of 3-substitution) and converted to PlsEtn in vitro in both RCDP1 and RCDP2 lymphocytes and in vivo in the Pex7 mouse model of RCPD1 effectively bypassing the peroxisomal dysfunction present in these disorders. While PPI-1011 was shown to replete PlsEtns 16:0/x, ether lipid precursors of PlsEtn 18:0/x and PlsEtn 18:1/x may also be needed to achieve optimal clinical benefits of plasmalogen replacement in these complex patient populations. In contrast, only limited plasmalogen replacement was observed in PMD lymphocytes suggesting that the effects of protein misfolding and accumulation in the ER negatively affect processing of plasmalogen precursors in this cellular compartment.
International Journal of Cancer | 2013
Shawn Ritchie; Jon Tonita; Riaz Alvi; Denis Lehotay; Hoda Elshoni; Su Myat; James McHattie; Dayan B. Goodenowe
Gastrointestinal tract acid‐446 (GTA‐446) is a long‐chain polyunsaturated fatty acid present in the serum. A reduction of GTA‐446 levels in colorectal cancer (CRC) patients has been reported previously. Our study compared GTA‐446 levels in subjects diagnosed with CRC at the time of colonoscopy to the general population. Serum samples and pathology data were collected from 4,923 representative subjects undergoing colonoscopy and from 964 subjects from the general population. Serum GTA‐446 levels were determined using a triple‐quadrupole tandem mass spectrometry method. A low‐serum GTA‐446 level was based on the bottom tenth percentile of subjects with low risk based on age (40–49 years old) in the general population. Eighty‐six percent of newly diagnosed CRC subjects (87% for stages 0–II and 85% for stages III–IV) showed low‐serum GTA‐446 levels. A significant increase in the CRC incidence rate with age was observed in subjects with low GTA‐446 levels (p = 0.019), but not in subjects with normal levels (p = 0.86). The relative risk of CRC given a low GTA‐446 level was the highest for subjects under age 50 (10.1, 95% confidence interval [C.I.] = 6.4–16.4 in the reference population, and 7.7, 95% C.I. = 4.4–14.1 in the colonoscopy population, both p < 0.0001), and declined with age thereafter. The CRC incidence rate in subjects undergoing colonoscopy with low GTA‐446 levels was over six times higher than for subjects with normal GTA‐446 levels and twice that of subjects with gastrointestinal symptoms. The results show that a low‐serum GTA‐446 level is a significant risk factor for CRC, and a sensitive predictor of early‐stage disease.
BMC Gastroenterology | 2010
Shawn Ritchie; Doug Heath; Yasuyo Yamazaki; Bryan Grimmalt; Amir Kavianpour; Kevin Krenitsky; Hoda Elshoni; Ichiro Takemasa; Masakazu Miyake; Mitsugu Sekimoto; Morito Monden; Takeshi Tomonaga; Hisahiro Matsubara; Kazuyuki Sogawa; Kazuyuki Matsushita; Fumio Nomura; Dayan B. Goodenowe
BackgroundSerum levels of novel hydroxy polyunsaturated ultra long-chain fatty acids (hPULCFAs) have been previously shown to be reduced in pre-treatment CRC patients compared to disease-free subjects, independent of disease stage. However, whether reduced levels of hPULCFAs result from the presence of cancer is currently unknown, as is the distribution of hPULCFAs in the general population. The following studies were carried out to assess whether conventional therapy would result in restoration of systemic hPULCFAs in CRC patients, and to investigate the relationship between hPULCFA levels and age.MethodsTandem mass spectrometry was used to determine serum levels of the 28 carbon-containing hPULCFA C28H46O4 (CRC-446) in the following cohorts: two independent Japanese CRC populations following surgical tumor removal (n = 86), a North American Caucasian CRC cohort (n = 150) following post-surgery combination chemo/radiation therapy, 990 randomly selected anonymized serum samples from subjects ranging between 11 and 99 years of age, as well as longitudinally collected serum samples from healthy normals (n = 8, up to 90 weeks) and stage IV CRC subjects on combination therapy (n = 12, up to 63 weeks).ResultsSerum CRC-446 levels in CRC subjects were significantly lower than controls (mean of 0.297 ± 0.07 ug/ml in controls versus 0.092 ± 0.03 in CRCs, p < 0.001), and were unaffected by surgical tumor removal or by chemo/radiation treatment (p > 0.05 between pre vs post surgery). CRC-446 levels showed a strong inverse association with age (p < E-11) across the randomly-selected cohort of 990 subjects, with no correlation observed in the CRC-positive subjects. Longitudinal intra-subject results, however, showed relatively stable CRC-446 levels over the short term of up to 90 weeks in both disease-free subjects and late-stage CRC patients.ConclusionsOur findings show that CRC-446 levels are not affected by conventional CRC treatment and inversely correlate with age, which suggest that reduced serum CRC-446 levels likely exist prior to the development of CRC. Extrapolation of the results to a simple screening scenario showed that, compared to fecal blood testing, pre-colonoscopy screening using serum CRC-446 levels would require 80% fewer colonoscopies, would identify risk in subjects under the age of 50, and would result in increased numbers of early cases detected. The precise role these serum metabolites play in the aetiology of cancer development remains to be determined.