Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daymi Camejo is active.

Publication


Featured researches published by Daymi Camejo.


Functional Plant Biology | 2006

Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants

Daymi Camejo; Ana I. Jiménez; J.J. Alarcón; Walfredo Torres; Juana María Gómez; Francisca Sevilla

Seedlings of two tomato genotypes, Lycopersicon esculentum Mill. var. Amalia and the wild thermotolerant type Nagcarlang, were grown under a photoperiod of 16 h light at 25°C and 8 h dark at 20°C. At the fourth true leaf stage, a group of plants were exposed to a heat-shock temperature of 45°C for 3 h, and measurements of chlorophyll fluorescence, gas-exchange characteristics, dark respiration and oxidative and antioxidative parameters were made after releasing the stress. The heat shock induced severe alterations in the photosynthesis of Amalia that seem to mitigate the damaging impact of high temperatures by lowering the leaf temperature and maintaining stomatal conductance and more efficient maintenance of antioxidant capacity, including ascorbate and glutathione levels. These effects were not evident in Nagcarlang. In Amalia plants, a larger increase in dark respiration also occurred in response to heat shock and the rates of the oxidative processes were higher than in Nagcarlang. This suggests that heat injury in Amalia may involve chlorophyll photooxidation mediated by activated oxygen species (AOS) and more severe alterations in the photosynthetic apparatus. All these changes could be related to the more dramatic effect of heat shock seen in Amalia than in Nagcarlang plants.


Journal of Experimental Botany | 2015

The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species

Francisca Sevilla; Daymi Camejo; Ana Ortiz-Espín; Aingeru Calderón; Juan-José Lázaro; Ana I. Jiménez

In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.


Journal of Experimental Botany | 2011

Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves

María C. Martí; Igor Florez-Sarasa; Daymi Camejo; Miquel Ribas-Carbo; Juan J. Lázaro; Francisca Sevilla; Ana I. Jiménez

Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.


Plant Physiology and Biochemistry | 2016

Reactive oxygen species, essential molecules, during plant-pathogen interactions.

Daymi Camejo; Ángel Guzmán-Cedeño; Alexander Moreno

Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.


Frontiers in Plant Science | 2013

Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation

Juan J. Lázaro; Ana Jiménez; Daymi Camejo; Iván Iglesias-Baena; María C. Martí; Alfonso Lázaro-Payo; Sergio Barranco-Medina; Francisca Sevilla

Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.


Journal of Hazardous Materials | 2009

Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants

M. Carmen Martí; Daymi Camejo; Nieves Fernández-García; Rubén Rellán-Álvarez; Silvia Marqués; Francisca Sevilla; Ana I. Jiménez

The refining process in the petrochemical industry generates oil refinery sludges, a potentially contaminating waste product, with a high content of hydrocarbons and heavy metals. Faster degradation of hydrocarbons has been reported in vegetated soils than in non-vegetated soils, but the impact of these contaminants on the plants physiology and on their antioxidant system is not well known. In this study, the effect of the addition of petroleum sludge to soil on the physiological parameters, nutrient contents, and oxidative and antioxidant status in alfalfa was investigated. An inhibition of alfalfa growth and an induction of oxidative stress, as indicated by an increase in protein oxidation, were found. Also, the superoxide dismutase isoenzymes, peroxidase, and those enzymes involved in the ascorbate-glutathione cycle showed significant activity increases, parallel to an enhancement of total homoglutathione, allowing plants being tolerant to this situation. This information is necessary to establish successful and sustainable plant-based remediation strategies.


Plant Biology | 2009

Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits

María C. Martí; Daymi Camejo; Enrique Olmos; Luisa M. Sandalio; Nieves Fernández-García; Ana I. Jiménez; Francisca Sevilla

Purification and characterisation of pepper (Capsicum annuum L) chloroplasts and chromoplasts isolated from commercial green, red and yellow mature fruits were undertaken. Induction of the synthesis of several antioxidants in organelles isolated from mature fruits was found. The ultrastructure of organelles and the presence and activity of SOD isozymes and enzymes involved in the ASC-GSH cycle, together with the non-enzymatic antioxidant content and some oxidative parameters, were analysed. It was found that lipids, rather than proteins, seem to be a target for oxidation in the chromoplasts. The ascorbate and glutathione contents were elicited during differentiation of chloroplasts into chromoplasts in both red and yellow fruits. The activity of SOD and of components of the ASC-GSH cycle was up-regulated, suggesting that these enzymes may play a role in the protection of plastids and could act as modulators of signal molecules such as O(2) ( -) and H(2)O(2) during fruit maturation. The presence of an Mn-SOD in chromoplasts isolated from yellow pepper fruits was also investigated in terms of structural and antioxidant differences between the two cultivars.


Journal of Experimental Botany | 2012

Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus

A. Hakmaoui; M. L. Pérez-Bueno; B. García-Fontana; Daymi Camejo; Ana I. Jiménez; Francisca Sevilla; Matilde Barón

The present study was carried out to investigate the role of reactive oxygen species (ROS) metabolism in symptom development and pathogenesis in Nicotiana benthamiana plants upon infection with two strains of Pepper mild mottle virus, the Italian (PMMoV-I) and the Spanish (PMMoV-S) strains. In this host, it has been shown that PMMoV-I is less virulent and plants show the capability to recover 21 d after inoculation. Analyses of oxidative stress biomarkers, ROS-scavenging enzyme activities, and antioxidant compounds were conducted in plants at different post-infection times. Only PMMoV-I stimulated a defence response through: (i) up-regulation of different superoxide dismutase isozymes; (ii) maintenance of adequate levels of three peroxiredoxins (2-Cys Prx, Prx IIC, and Prx IIF); and (iii) adjustments in the glutathione pool to maintain the total glutathione content. Moreover, there was an increase in the level of oxidized glutathione and ascorbate in the recovery phase of PMMoV-I-infected plants. The antioxidant response and the extent of oxidative stress in N. benthamiana plants correlates to: (i) the severity of the symptoms elicited by either strain of PMMoV; and (ii) the high capacity of PMMoV-I-infected plants for symptom recovery and delayed senescence, compared with PMMoV-S-infected plants.


Journal of Agricultural and Food Chemistry | 2010

Antioxidant system and protein pattern in peach fruits at two maturation stages.

Daymi Camejo; María C. Martí; Paloma Román; Ana Ortiz; Ana Jiménez

Peach fruits were selected to study the protein pattern and antioxidant system as well as oxidative parameters such as superoxide radical and hydrogen peroxide accumulation, at two maturity stages, which were chosen for being suitable for the processing industry and fresh consumption. The proteins phosphoenolpyruvate carboxylase, sucrose synthase, and 1-aminocyclopropane-1-carboxylate oxidase, as well as the antioxidants glutathione synthetase and ascorbate peroxidase, appeared as new in the mature peach fruits. Activities of superoxide dismutase (SOD) and components of the ascorbate-glutathione cycle were also measured to explore their role in the two maturity stages studied. Changes in the SOD isoenzyme pattern and an increase in the activities of ascorbate peroxidase, monodehydroascorbate reductase, and glutathione reductase were observed in mature fruits, revealing an efficient system to cope with the oxidative process accompanying ripening.


Plant Foods for Human Nutrition | 2011

Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars.

María C. Martí; Daymi Camejo; Fernando Vallejo; F. Romojaro; Sierra Bacarizo; José M. Palma; Francisca Sevilla; Ana I. Jiménez

Pepper (Capsicum annuum L.) fruits are highly appreciated by producers and consumers for their economical and nutritional value. Four different cultivars of coloured peppers in immature and mature stages were harvested throughout the spring and examined for their content of phenolic compounds, ascorbic acid and total antioxidant capacity (TAA) as well as for lipid peroxidation and carbonyl proteins as index of oxidative stress. Ripening and harvest period influenced the antioxidants and the development of oxidative processes in the cultivars differently: lipid peroxidation increased in mature peppers except in one cultivar (Y1075), while no changes in protein oxidation or in TAA were produced, except in Y1075 in which both parameters increased. Each cultivar presented differences in antioxidant compounds depending on the harvest period, but we could recommend May as the optimal if all cultivars have to be harvested at the same time, when levels of ascorbate, phenols and TAA were not decreased, fresh weight and proteins were elevated, and levels of oxidation were not as high as in June (except for Y1075). A previous study of the response of each cultivar to different environmental conditions results essential to establish a good program of selection of cultivars with high quality and productivity.

Collaboration


Dive into the Daymi Camejo's collaboration.

Top Co-Authors

Avatar

Francisca Sevilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana I. Jiménez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María C. Martí

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Ortiz-Espín

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan J. Lázaro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alfonso Lázaro-Payo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.J. Alarcón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aingeru Calderón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique Olmos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge