Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dayoung Lee is active.

Publication


Featured researches published by Dayoung Lee.


Journal of the American Chemical Society | 2014

Cyanine-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues

Jun Yin; Younghee Kwon; Dabin Kim; Dayoung Lee; Gyoungmi Kim; Ying Hu; Ji-Hwan Ryu; Juyoung Yoon

Glutathione (GSH) plays a crucial role in human pathologies. Near-infrared fluorescence-based sensors capable of detecting intracellular GSH in vivo would be useful tools to understand the mechanisms of diseases. In this work, two cyanine-based fluorescent probes, 1 and 2, containing sulfonamide groups were prepared. Evaluation of the fluorescence changes displayed by probe 1, which contains a 2,4-dinitrobenzenesulfonamide group, shows that it is cell-membrane-permeable and can selectively detect thiols such as GSH, cysteine (Cys), and homocysteine (Hcy) in living cells. The response of 1 to thiols can be reversed by treatment with N-methylmaleimide (NMM). Probe 2, which possesses a 5-(dimethylamino)naphthalenesulfonamide group, displays high selectivity for GSH over Cys and Hcy, and its response can be reversed using NMM. The potential biological utility of 2 was shown by its use in fluorescence imaging of GSH in living cells. Furthermore, probe 2 can determine changes in the intracellular levels of GSH modualated by H2O2. The properties of 2 enable its use in monitoring GSH in vivo in a mouse model. The results showed that intravenous injection of 2 into a mouse generates a dramatic image in which strong fluorescence is emitted from various tissues, including the liver, kidney, lung, and spleen. Importantly, 2 can be utilized to monitor the depletion of GSH in mouse tissue cells promoted by excessive administration of the painkiller acetaminophen. The combined results coming from this effort suggest that the new probe will serve as an efficient tool for detecting cellular GSH in animals.


Angewandte Chemie | 2016

Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy.

Safacan Kolemen; Tugba Ozdemir; Dayoung Lee; Gyoung Mi Kim; Tugce Karatas; Juyoung Yoon; Engin U. Akkaya

The photodynamic therapy of cancer is contingent upon the sustained generation of singlet oxygen in the tumor region. However, tumors of the most metastatic cancer types develop a region of severe hypoxia, which puts them beyond the reach of most therapeutic protocols. More troublesome, photodynamic action generates acute hypoxia as the process itself diminishes cellular oxygen reserves, which makes it a self-limiting method. Herein, we describe a new concept that could eventually lead to a change in the 100 year old paradigm of photodynamic therapy and potentially offer solutions to some of the lingering problems. When gold nanorods with tethered endoperoxides are irradiated at 808 nm, the endoperoxides undergo thermal cycloreversion, resulting in the generation of singlet oxygen. We demonstrate that the amount of singlet oxygen produced in this way is sufficient for triggering apoptosis in cell cultures.


Nature Protocols | 2015

Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice

Jun Yin; Younghee Kwon; Dabin Kim; Dayoung Lee; Gyoungmi Kim; Ying Hu; Ji-Hwan Ryu; Juyoung Yoon

Glutathione (GSH) is a major endogenous antioxidant that has a central role in cellular defense against toxins and free radicals. This protocol describes the preparation of CPDSA, a cyanine-based near-infrared (NIR) fluorescent probe for the detection of GSH in cells and in vivo. CPDSA is prepared with high yield through a simple two-step process. The first step is to react commercially available IR-780 iodide with excess anhydrous piperazine in anhydrous N,N-dimethyl formamide at 85 °C to form cyanine-piperazine (CP). The second step is the sulfonylation of CP with dansyl chloride in anhydrous dichloromethane. CPDSA selectively detects GSH in cells, and it has been shown to not react with other biothiols such as cysteine (Cys) and homocysteine (Hcy). This probe can also be used to monitor the GSH level of mouse bone marrow–derived neutrophils (BMDNs). The preparation of probe CPDSA takes 2 d, and experiments in cells and mice take 12–13 d.


Analytical Chemistry | 2017

A Far-Red-Emitting Fluorescence Probe for Sensitive and Selective Detection of Peroxynitrite in Live Cells and Tissues

Di Wu; Jae-Chan Ryu; Youn Wook Chung; Dayoung Lee; Ji-Hwan Ryu; Joo-Heon Yoon; Juyoung Yoon

In this study, the far-red-emitting fluorescence probe 1, containing a rhodamine derivative and a hydrazide reactive group, was developed for peroxynitrite detection and imaging. This probe, which is cell permeable and shows high sensitivity and selectivity in fluorometric detection of peroxynitrite over other ROS/RNS, was successfully utilized to detect exogenous and endogenous peroxynitrite in HeLa and RAW 264.7 cells, respectively. More importantly, 1 can also be used to detect endogenous peroxynitrite generated in Pseudomonas aeruginosa (PAO1)-infected mouse bone marrow-derived neutrophils. We anticipate that the new probe will serve as a powerful molecular imaging tool in investigations of the role(s) played by peroxynitrite in a variety of physiological and pathological contexts.


Biosensors and Bioelectronics | 2017

Two-photon fluorescence sensors for imaging NMDA receptors and monitoring release of Zn2+ from the presynaptic terminal

Xiaoqiang Chen; Chang Su Lim; Dayoung Lee; Songyi Lee; Sang Jun Park; Hwan Myung Kim; Juyoung Yoon

Synaptic Zn2+ plays an important role in neurotransmission and a neuromodulator. The development of the imaging tools for monitoring spatiotemporal changes taking place in synaptic Zn2+ concentrations is necessary in order to understand the role of Zn2+ in the function of many aspects of the glutamate system. In this work, two-photon probes 1 and 2, bearing ifenprodil-like tails that have affinity for NMDA receptors of neuronal cells, were designed and prepared. The two-photon fluorescent probe 1, which bears (N-(6-acetylnaphthalen-2-yl)-N-methylglycine) as two-photon fluorophore, enables high resolution imaging of neuronal cells. The two-photon fluorescent probe 2, which contains the di-2-picolylamine (DPA) as a Zn2+-binding site, the naphthalimide unit as the two-photon fluorophore, and the ifenprodil-like tail as the NMDA receptor binding moiety, can be employed for selective detection of Zn2+ located near the NMDA receptor and for monitoring concentration changes of Zn2+ in live neurons and hippocampal tissues.


Journal of Materials Chemistry B | 2017

Near-infrared fluorescent probes for the detection of glutathione and their application in the fluorescence imaging of living cells and tumor-bearing mice

Dayoung Lee; Keunsoo Jeong; Xiao Luo; Gayoung Kim; Youjun Yang; Xiaoqiang Chen; Sehoon Kim; Juyoung Yoon

Two new cyanine-based fluorescent probes 1 and 2 have been developed. Probe 1 bears two cyanine units in a single molecule, and probe 2 contains a bis(trifluoromethyl)benzenethiol moiety. Both are non-fluorescent. The addition of intracellular glutathione (GSH) significantly enhanced the NIR fluorescence of the two probes. Both probes were used to image varying amounts of GSH in living cells. In tumor bearing mice, the in vivo fluorescence intensity of both probes was higher in tumors, where GSH is overexpressed, than in normal tissues. These results suggest that these new fluorogenic probes have potential for GSH-targeting diagnostic imaging.


Theranostics | 2018

Naphthalene-based fluorescent probes for glutathione and their applications in living cells and patients with sepsis

Jun Li; Younghee Kwon; Kyung Soo Chung; Chang Su Lim; Dayoung Lee; Yongkang Yue; Jisoo Yoon; Gyoungmi Kim; Sang-Jip Nam; Youn Wokk Chung; Hwan Myung Kim; Caixia Yin; Ji-Hwan Ryu; Juyoung Yoon

Rationale: Among the biothiols-related diseases, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection and can result in severe oxidative stress and damage to multiple organs. In this study, we aimed to develop a fluorescence chemosensor that can both detect GSH and further predict sepsis. Methods: In this study, two new naphthalene dialdehyde compounds containing different functional groups were synthesized, and the sensing abilities of these compounds towards biothiols and its applications for prediction of sepsis were investigated. Results: Our study revealed that the newly developed probe 6-methoxynaphthalene-2, 3-dicarbaldehyde (MNDA) has two-photon is capable of detecting GSH in live cells with two-photon microscopy (TPM) under the excitation at a wavelength of 900 nm. Furthermore, two GSH detection probes naphthalene-2,3-dicarboxaldehyde (NDA) and 6-fluoronaphthalene-2,3-dicarbaldehyde (FNDA) not only can detect GSH in living cells, but also showed clinical significance for the diagnosis and prediction of mortality in patients with sepsis. Conclusions: These results open up a promising direction for further medical diagnostic techniques.


Photons Plus Ultrasound: Imaging and Sensing 2018 | 2018

Photoacoustic imaging of tumor targeting with biotin conjugated nanostructured phthalocyanine assemblies

Seung-Hyun Anna Lee; Xingshu Li; Dayoung Lee; Juyoung Yoon; Chulhong Kim

Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice’s whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.


Materials Chemistry Frontiers | 2018

Imidazole and triazole head group-containing polydiacetylenes for colorimetric monitoring of pH and detecting HCl gas

Woolin Lee; Dayoung Lee; Ji-Yeong Kim; Songyi Lee; Juyoung Yoon

The family of conjugated polymers known as polydiacetylenes (PDAs) has been extensively utilized in designing stimuli-responsive colorimetric and fluorometric sensors. In the current study, we have developed highly sensitive and rapidly responsive colorimetric chemosensors composed of PDAs bearing imidazole (PDA-Im) and triazole (PDA-Ta) head groups for the determination of pH and the detection of HCl gas. In solution, PDA-Im and PDA-Ta display distinct colorimetric changes from blue to red accordingly in response to pH changes. Also, a PDA-Im film was fabricated to detect HCl by a visibly observed blue-to-red color change.


Angewandte Chemie | 2018

Phthalocyanine‐Assembled Nanodots as Photosensitizers for Highly Efficient Type I Photoreactions in Photodynamic Therapy

Xingshu Li; Dayoung Lee; Jian-Dong Huang; Juyoung Yoon

Owing to their unique, nanoscale related optical properties, nanostructures assembled from molecular photosensitizers (PSs) have interesting applications in phototheranostics. However, most nanostructured PS assemblies are super-quenched, thus, preventing their use in photodynamic therapy (PDT). Although some of these materials undergo stimuli-responsive disassembly, which leads to partial recovery of PDT activity, their therapeutic potentials are unsatisfactory owing to a limited ability to promote generation reactive oxygen species (ROS), especially via type I photoreactions (i.e., not by 1 O2 generation). Herein we demonstrate that a new, nanostructured phthalocyanine assembly, NanoPcA, has the ability to promote highly efficient ROS generation via the type I mechanism. The results of antibacterial studies demonstrate that NanoPcA has potential PDT applications.

Collaboration


Dive into the Dayoung Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Hwan Ryu

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Songyi Lee

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Xingshu Li

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Yifan Liu

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Ying Hu

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dabin Kim

Ewha Womans University

View shared research outputs
Researchain Logo
Decentralizing Knowledge