Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dayrl P. Briggs is active.

Publication


Featured researches published by Dayrl P. Briggs.


Nano Letters | 2014

Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.

Yuanmu Yang; Wenyi Wang; Parikshit Moitra; Ivan I. Kravchenko; Dayrl P. Briggs; Jason Valentine

Plasmonic metasurfaces have recently attracted much attention due to their ability to abruptly change the phase of light, allowing subwavelength optical elements for polarization and wavefront control. However, most previously demonstrated metasurface designs suffer from low coupling efficiency and are based on metallic resonators, leading to ohmic loss. Here, we present an alternative approach to plasmonic metasurfaces by replacing the metallic resonators with high-refractive-index silicon cut-wires in combination with a silver ground plane. We experimentally demonstrate that this meta-reflectarray can be used to realize linear polarization conversion with more than 98% conversion efficiency over a 200 nm bandwidth in the short-wavelength infrared band. We also demonstrate optical vortex beam generation using a meta-reflectarray with an azimuthally varied phase profile. The vortex beam generation is shown to have high efficiency over a wavelength range from 1500 to 1600 nm. The use of dielectric resonators in place of their plasmonic counterparts could pave the way for ultraefficient metasurface-based devices at high frequencies.


Nature Photonics | 2013

Realization of an all-dielectric zero-index optical metamaterial

Parikshit Moitra; Yuanmu Yang; Zachary Anderson; Ivan I. Kravchenko; Dayrl P. Briggs; Jason Valentine

Previously demonstrated zero- or negative-refractive-index metamaterials at optical frequencies suffer from large ohmic losses because of the need to use metals. Metamaterials formed by stacked silicon rod unit cells allow the realization of all-dielectric impedance-matched zero-index metamaterials operating at optical frequencies, potentially benefiting the development of angular-selective optical devices.


Nature Communications | 2014

All-dielectric metasurface analogue of electromagnetically induced transparency

Yuanmu Yang; Ivan I. Kravchenko; Dayrl P. Briggs; Jason Valentine

Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale.


Nano Letters | 2015

Nonlinear Fano-Resonant Dielectric Metasurfaces

Yuanmu Yang; Wenyi Wang; Abdelaziz Boulesbaa; Ivan I. Kravchenko; Dayrl P. Briggs; Alexander A. Puretzky; David B. Geohegan; Jason Valentine

Strong nonlinear light-matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. Here, we present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. We measure a third harmonic generation enhancement factor of 1.5 × 10(5) with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 × 10(-6) with a peak pump intensity of 3.2 GW cm(-2). The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. The modulation mechanism is studied by pump-probe experiments.


Nanotechnology | 2012

Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene.

Alexander Tselev; Nickolay V. Lavrik; Ivan Vlassiouk; Dayrl P. Briggs; Maarten Rutgers; Roger Proksch; Sergei V. Kalinin

We have performed near-field scanning microwave microscopy (SMM) of graphene grown by chemical vapor deposition. Due to the use of probe-sample capacitive coupling and a relatively high ac frequency of a few GHz, this scanning probe method allows mapping of local conductivity without a dedicated counter electrode, with a spatial resolution of about 50 nm. Here, the coupling was enabled by atomic layer deposition of alumina on top of graphene, which in turn enabled imaging both large-area films, as well as micron-sized islands, with a dynamic range covering a low sheet resistance of a metal film and a high resistance of highly disordered graphene. The structures of graphene grown on Ni films and Cu foils are explored, and the effects of growth conditions are elucidated. We present a simple general scheme for interpretation of the contrast in the SMM images of our graphene samples and other two-dimensional conductors, which is supported by extensive numerical finite-element modeling. We further demonstrate that combination of the SMM and numerical modeling allows quantitative information about the sheet resistance of graphene to be obtained, paving the pathway for characterization of graphene conductivity with a sub-100 nm special resolution.


Applied Physics Letters | 2015

Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

Wenyi Wang; Andrey Klots; Yuanmu Yang; Wei Li; Ivan I. Kravchenko; Dayrl P. Briggs; Kirill Bolotin; Jason Valentine

The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graph...


ACS Nano | 2014

Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets

Rebecca L. Agapov; Jonathan B. Boreyko; Dayrl P. Briggs; Bernadeta R. Srijanto; Scott T. Retterer; C. Patrick Collier; Nickolay V. Lavrik

Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers ≥40 at T ≥ 325 °C. The directionality for these droplets is opposite to the direction previously exhibited by macro- and microscale Leidenfrost ratchets where movement against the tilt of the ratchet was observed. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of the widely accepted mechanism of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, linking asymmetric surface wettability to preferential directionality of dynamic Leidenfrost droplets on nanostructured surfaces.


Nanotechnology | 2013

Lithography-free approach to highly efficient, scalable SERS substrates based on disordered clusters of disc on pillar structures

Rebecca L. Agapov; Bernadeta R. Srijanto; Christopher P Fowler; Dayrl P. Briggs; Nickolay V. Lavrik; Michael J. Sepaniak

We present a lithography-free technological strategy that enables fabrication of large area substrates for surface-enhanced Raman spectroscopy (SERS) with excellent performance in the red to NIR spectral range. Our approach takes advantage of metal dewetting as a facile means to create stochastic arrays of circular patterns suitable for subsequent fabrication of plasmonic disc-on-pillar (DOP) structures using a combination of anisotropic reactive ion etching (RIE) and thin film deposition. Consistent with our previous studies of individual DOP structures, pillar height which, in turn, is defined by the RIE processing time, has a dramatic effect on the SERS performance of stochastic arrays of DOP structures. Our computational analysis of model DOP systems confirms the strong effect of the pillar height and also explains the broadband sensitivity of the implemented SERS substrates. Our Raman mapping data combined with SEM structural analysis of the substrates exposed to benzenethiol solutions indicates that clustering of shorter DOP structures and bundling of taller ones is a likely mechanism contributing to higher SERS activity. Nonetheless, bundled DOP structures appeared to be consistently less SERS-active than vertically aligned clusters of DOPs with optimized parameters. The latter are characterized by average SERS enhancement factors above 10(7).


Nanotechnology | 2017

High performance top-gated multilayer WSe2 field effect transistors

Pushpa Raj Pudasaini; Michael G. Stanford; Akinola D. Oyedele; Anthony T. Wong; Anna N. Hoffman; Dayrl P. Briggs; Kai Xiao; D. Mandrus; Thomas Ward; Philip D. Rack

In this paper, high performance top-gated WSe2 field effect transistor (FET) devices are demonstrated via a two-step remote plasma assisted ALD process. High-quality, low-leakage aluminum oxide (Al2O3) gate dielectric layers are deposited onto the WSe2 channel using a remote plasma assisted ALD process with an ultrathin (∼1 nm) titanium buffer layer. The first few nanometers (∼2 nm) of the Al2O3 dielectric film is deposited at relatively low temperature (i.e. 50 °C) and remainder of the film is deposited at 150 °C to ensure the conformal coating of Al2O3 on the WSe2 surface. Additionally, an ultra-thin titanium buffer layer is introduced at the WSe2 channel surface prior to ALD process to mitigate oxygen plasma induced doping effects. Excellent device characteristics with current on-off ratio in excess of 106 and a field effect mobility as high as 70.1 cm2 V-1 s-1 are achieved in a few-layer WSe2 FET device with a 30 nm Al2O3 top-gate dielectric. With further investigation and careful optimization, this method can play an important role for the realization of high performance top gated FETs for future optoelectronic device applications.


Philosophical Transactions of the Royal Society A | 2017

Metasurface polarization splitter

Brian A. Slovick; You Zhou; Zhi-Gang Yu; Ivan I. Kravchenko; Dayrl P. Briggs; Parikshit Moitra; S. Krishnamurthy; Jason Valentine

Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits. This article is part of the themed issue ‘New horizons for nanophotonics’.

Collaboration


Dive into the Dayrl P. Briggs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan I. Kravchenko

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bernadeta R. Srijanto

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nickolay V. Lavrik

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott T. Retterer

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rebecca L. Agapov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Patrick Collier

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonathan B. Boreyko

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge