De-en Jiang
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by De-en Jiang.
Nano Letters | 2009
De-en Jiang; Valentino R. Cooper; Sheng Dai
We investigate the permeability and selectivity of graphene sheets with designed subnanometer pores using first principles density functional theory calculations. We find high selectivity on the order of 10(8) for H(2)/CH(4) with a high H(2) permeance for a nitrogen-functionalized pore. We find extremely high selectivity on the order of 10(23) for H(2)/CH(4) for an all-hydrogen passivated pore whose small width (at 2.5 A) presents a formidable barrier (1.6 eV) for CH(4) but easily surmountable for H(2) (0.22 eV). These results suggest that these pores are far superior to traditional polymer and silica membranes, where bulk solubility and diffusivity dominate the transport of gas molecules through the material. Recent experimental investigations, using either electron beams or bottom-up synthesis to create pores in graphene, suggest that it may be possible to employ such techniques to engineer variable-sized, graphene nanopores to tune selectivity and molecular diffusivity. Hence, we propose using porous graphene sheets as one-atom-thin, highly efficient, and highly selective membranes for gas separation. Such a pore could have widespread impact on numerous energy and technological applications; including carbon sequestration, fuel cells, and gas sensors.
Angewandte Chemie | 2011
Congmin Wang; Xiaoyan Luo; Huimin Luo; De-en Jiang; Haoran Li; Sheng Dai
Basic ionic liquids (ILs) based on a phosphonium hydroxide derivative can be tuned for CO{sub 2} capture by varying the weak proton donors, which have different pK{sub a} values. The stability, absorption capacity, and absorption enthalpy of the ILs could be easily tuned: the best IL for CO{sub 2} capture has good stability (>300 C), energy saving (ca. 56 kJ mol{sup -1}), and equimolar absorption capability.
Angewandte Chemie | 2010
Congmin Wang; Huimin Luo; De-en Jiang; Haoran Li; Sheng Dai
Protic ionic liquids (PILs) from a superbase and fluorinated alcohol, imidazole, pyrrolinone, or phenol were designed to capture CO{sub 2} based on the reactivity of their anions to CO{sub 2}. These PILs are capable of rapid and reversible capture of about one equivalent of CO{sub 2}, which is superior to those sorption systems based on traditional aprotic ILs.
Journal of the American Chemical Society | 2014
Yong Yu; Zhentao Luo; Daniel M. Chevrier; David Tai Leong; Peng Zhang; De-en Jiang; Jianping Xie
The luminescence property of thiolated gold nanoclusters (Au NCs) is thought to involve the Au(I)-thiolate motifs on the NC surface; however, this hypothesis remains largely unexplored because of the lack of precise molecular composition and structural information of highly luminescent Au NCs. Here we report a new red-emitting thiolated Au NC, which has a precise molecular formula of Au22(SR)18 and exhibits intense luminescence. Interestingly, this new Au22(SR)18 species shows distinctively different absorption and emission features from the previously reported Au22(SR)16, Au22(SR)17, and Au25(SR)18. In stark contrast, Au22(SR)18 luminesces intensely at ∼665 nm with a high quantum yield of ∼8%, while the other three Au NCs show very weak luminescence. Our results indicate that the luminescence of Au22(SR)18 originates from the long Au(I)-thiolate motifs on the NC surface via the aggregation-induced emission pathway. Structure prediction by density functional theory suggests that Au22(SR)18 has two RS-[Au-SR]3 and two RS-[Au-SR]4 motifs, interlocked and capping on a prolate Au8 core. This predicted structure is further verified experimentally by Au L3-edge X-ray absorption fine structure analysis.
Journal of the American Chemical Society | 2012
Huifeng Qian; De-en Jiang; Gao Li; Chakicherla Gayathri; Anindita Das; Roberto R. Gil; Rongchao Jin
We report single-atom doping of gold nanoclusters (NCs), and its drastic effects on the optical, electronic, and catalytic properties, using the 25-atom system as a model. In our synthetic approach, a mixture of Pt(1)Au(24)(SC(2)H(4)Ph)(18) and Au(25)(SC(2)H(4)Ph)(18) was produced via a size-focusing process, and then Pt(1)Au(24)(SC(2)H(4)Ph)(18) NCs were obtained by selective decomposition of Au(25)(SC(2)H(4)Ph)(18) in the mixture with concentrated H(2)O(2) followed by purification via size-exclusion chromatography. Experimental and theoretical analyses confirmed that Pt(1)Au(24)(SC(2)H(4)Ph)(18) possesses a Pt-centered icosahedral core capped by six Au(2)(SC(2)H(4)Ph)(3) staples. The Pt(1)Au(24)(SC(2)H(4)Ph)(18) cluster exhibits greatly enhanced stability and catalytic activity relative to Au(25)(SC(2)H(4)Ph)(18) but a smaller energy gap (E(g) ≈ 0.8 eV vs 1.3 eV for the homogold cluster).
Nano Letters | 2011
De-en Jiang; Zhehui Jin; Jianzhong Wu
Porous carbons of high surface area are promising as cost-effective electrode materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agrees well with the experiment when the pore size is less than twice the ionic diameter. Confirmation of the entire oscillatory spectrum invites future experiments with a precise control of the pore size from micro- to mesoscales.
Journal of the American Chemical Society | 2014
Zhentao Luo; Vairavan Nachammai; Bin Zhang; Ning Yan; David Tai Leong; De-en Jiang; Jianping Xie
Despite 20 years of progress in synthesizing thiolated gold nanoclusters (Au NCs), the knowledge of their growth mechanism still lags behind. Herein the detailed process from reduction of Au(I)-thiolate complex precursors to the eventual evolution of and focusing to the atomically precise Au25 NCs was revealed for the first time by monitoring the time evolution of Au(I) precursor and Au NC intermediate species with ESI-MS. A two-stage, bottom-up formation and growth process was proposed: a fast stage of reduction-growth mechanism, followed by a slow stage of intercluster conversion and focusing. Balanced reactions of formation for each identified NC were suggested, backed by theoretical calculations of the thermodynamic driving force. This work advances one step further toward understanding the mechanism of formation and growth of thiolated Au NCs.
Journal of Chemical Physics | 2007
De-en Jiang; Bobby G. Sumpter; Sheng Dai
Magnetism in nanographenes [also known as polycyclic aromatic hydrocarbons (PAHs)] is studied with first principles density functional calculations. We find that an antiferromagnetic (AFM) phase appears as the PAH reaches a certain size. This AFM phase in PAHs has the same origin as the one in infinitely long zigzag-edged graphene nanoribbons, namely, from the localized electronic state at the zigzag edge. The smallest PAH still having an AFM ground state is identified. With increased length of the zigzag edge, PAHs approach an infinitely long ribbon in terms of (1) the energetic ordering and difference among the AFM, ferromagnetic, and nonmagnetic phases and (2) the average local magnetic moment at the zigzag edges. These PAHs serve as ideal targets for chemical synthesis of nanographenes that possess magnetic properties. Moreover, our calculations support the interpretation that experimentally observed magnetism in activated carbon fibers originates from the zigzag edges of the nanographenes.
Journal of the American Chemical Society | 2014
Zili Wu; De-en Jiang; Amanda K. P. Mann; David R. Mullins; Zhen-an Qiao; Lawrence F. Allard; Chenjie Zeng; Rongchao Jin; Steven H. Overbury
The effect of thiolate ligands was explored on the catalysis of CeO2 rod supported Au25(SR)18 (SR = -SCH2CH2Ph) by using CO oxidation as a probe reaction. Reaction kinetic tests, in situ IR and X-ray absorption spectroscopy, and density functional theory (DFT) were employed to understand how the thiolate ligands affect the nature of active sites, activation of CO and O2, and reaction mechanism and kinetics. The intact Au25(SR)18 on the CeO2 rod is found not able to adsorb CO. Only when the thiolate ligands are partially removed, starting from the interface between Au25(SR)18 and CeO2 at temperatures of 423 K and above, can the adsorption of CO be observed by IR. DFT calculations suggest that CO adsorbs favorably on the exposed gold atoms. Accordingly, the CO oxidation light-off temperature shifts to lower temperature. Several types of Au sites are probed by IR of CO adsorption during the ligand removal process. The cationic Au sites (charged between 0 and +1) are found to play the major role for low-temperature CO oxidation. Similar activation energies and reaction rates are found for CO oxidation on differently treated Au25(SR)18/CeO2 rod catalysts, suggesting a simple site-blocking effect of the thiolate ligands in Au nanocluster catalysis. Isotopic labeling experiments clearly indicate that CO oxidation on the Au25(SR)18/CeO2 rod catalyst proceeds predominantly via the redox mechanism where CeO2 activates O2 while CO is activated on the dethiolated gold sites. These results point to a double-edged sword role played by the thiolate ligands on Au25 nanoclusters for CO oxidation.
Catalysis Science & Technology | 2016
Nan Jiang; Qing Tang; Meili Sheng; Bo You; De-en Jiang; Yujie Sun
Electrocatalytic water splitting to produce H2 plays an important role in the capture, conversion, and storage of renewable energy sources, such as solar energy and wind power. As the reductive half reaction of water splitting, H2 evolution reaction (HER) suffers from sluggish kinetics, and hence competent HER catalysts are needed. Despite being excellent HER catalysts, noble metal-based catalysts (i.e. Pt) are too expensive to be economically competitive. Therefore, low-cost catalysts composed of solely earth-abundant elements have attracted increasing attention these years, among which nickel-based HER catalysts, particularly nickel chalcogenides, are considered as promising candidates. Although many nickel chalcogenides, including NiS, NiS2, and Ni3S2, have been reported for hydrogen evolution, their intrinsic catalytic activities have never been investigated and compared in detail under the same conditions. Most of the previous investigations were limited to only one species of nickel chalcogenides under very unique conditions, rendering a fair comparison of their HER activities impossible. Herein, we report the preparation and characterization of three crystalline nickel sulfides, NiS, NiS2, and Ni3S2, with comparable crystal sizes and specific surface areas. Detailed electrochemical studies under strongly alkaline conditions coupled with theoretical computations were performed to probe their intrinsic HER activities, resulting in the order of Ni3S2 > NiS2 > NiS. The superior HER performance of Ni3S2 mainly stems from the combined effect of large electrochemically active surface area and high conductivity (metallic conductor vs. semiconductor).