Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where De-Hyung Lee is active.

Publication


Featured researches published by De-Hyung Lee.


Brain | 2011

Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway

Ralf A. Linker; De-Hyung Lee; Sarah Ryan; Anne M. van Dam; Rebecca Conrad; Pradeep Bista; Weike Zeng; Xiaoping Hronowsky; Alex Buko; Sowmya Chollate; Gisa Ellrichmann; Wolfgang Brück; Kate Dawson; Susan Goelz; Stefan Wiese; Robert H. Scannevin; Matvey E. Lukashev; Ralf Gold

Inflammation and oxidative stress are thought to promote tissue damage in multiple sclerosis. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for multiple sclerosis treatment. BG00012 is an oral formulation of dimethylfumarate. In a phase II multiple sclerosis trial, BG00012 demonstrated beneficial effects on relapse rate and magnetic resonance imaging markers indicative of inflammation as well as axonal destruction. First we have studied effects of dimethylfumarate on the disease course, central nervous system, tissue integrity and the molecular mechanism of action in an animal model of chronic multiple sclerosis: myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis in C57BL/6 mice. In the chronic phase of experimental autoimmune encephalomyelitis, preventive or therapeutic application of dimethylfumarate ameliorated the disease course and improved preservation of myelin, axons and neurons. In vitro, the application of fumarates increased murine neuronal survival and protected human or rodent astrocytes against oxidative stress. Application of dimethylfumarate led to stabilization of the transcription factor nuclear factor (erythroid-derived 2)-related factor 2, activation of nuclear factor (erythroid-derived 2)-related factor 2-dependent transcriptional activity and accumulation of NADP(H) quinoline oxidoreductase-1 as a prototypical target gene. Furthermore, the immediate metabolite of dimethylfumarate, monomethylfumarate, leads to direct modification of the inhibitor of nuclear factor (erythroid-derived 2)-related factor 2, Kelch-like ECH-associated protein 1, at cysteine residue 151. In turn, increased levels of nuclear factor (erythroid-derived 2)-related factor 2 and reduced protein nitrosylation were detected in the central nervous sytem of dimethylfumarate-treated mice. Nuclear factor (erythroid-derived 2)-related factor 2 was also upregulated in the spinal cord of autopsy specimens from untreated patients with multiple sclerosis. In dimethylfumarate-treated mice suffering from experimental autoimmune encephalomyelitis, increased immunoreactivity for nuclear factor (erythroid-derived 2)-related factor 2 was detected by confocal microscopy in neurons of the motor cortex and the brainstem as well as in oligodendrocytes and astrocytes. In mice deficient for nuclear factor (erythroid-derived 2)-related factor 2 on the same genetic background, the dimethylfumarate mediated beneficial effects on clinical course, axon preservation and astrocyte activation were almost completely abolished thus proving the functional relevance of this transcription factor for the neuroprotective mechanism of action. We conclude that the ability of dimethylfumarate to activate nuclear factor (erythroid-derived 2)-related factor 2 may offer a novel cytoprotective modality that further augments the natural antioxidant responses in multiple sclerosis tissue and is not yet targeted by other multiple sclerosis therapies.


Immunity | 2015

Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine

Aiden Haghikia; Stefanie Jörg; Alexander Duscha; Johannes Berg; Arndt Manzel; Anne Waschbisch; Anna Hammer; De-Hyung Lee; Caroline May; Nicola Wilck; András Balogh; Annika I. Ostermann; Nils Helge Schebb; Denis A. Akkad; Diana A. Grohme; Markus Kleinewietfeld; Stefan Kempa; Jan Thöne; Seray Demir; Dominik Müller; Ralf Gold; Ralf A. Linker

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system.

Johannes Stegbauer; De-Hyung Lee; Silvia Seubert; Gisa Ellrichmann; Arndt Manzel; Heda Kvakan; Dominik Müller; Stefanie Gaupp; Lars Christian Rump; Ralf Gold; Ralf A. Linker

Angiotensin II is the principle effector molecule of the renin angiotensin system (RAS). It exerts its various actions on the cardiovascular and renal system, mainly via interaction with the angiotensin II type-1 receptor (AT1R), which contributes to blood pressure regulation and development of hypertension but may also mediate effects on the immune system. Here we study the role of the RAS in myelin-oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), a model mimicking many aspects of multiple sclerosis. Quantitative RT-PCR analyses showed an up-regulation of renin, angiotensin-converting enzyme, as well as AT1R in the inflamed spinal cord and the immune system, including antigen presenting cells (APC). Treatment with the renin inhibitor aliskiren, the angiotensin II converting-enzyme inhibitor enalapril, as well as preventive or therapeutic application of the AT1R antagonist losartan, resulted in a significantly ameliorated course of MOG-EAE. Blockade of AT1R did not directly impact on T-cell responses, but significantly reduced numbers of CD11b+ or CD11c+ APC in immune organs and in the inflamed spinal cord. Additionally, AT1R blockade impaired the expression of CCL2, CCL3, and CXCL10, and reduced CCL2-induced APC migration. Our findings suggest a pivotal role of the RAS in autoimmune inflammation of the central nervous system and identify RAS blockade as a potential new target for multiple sclerosis therapy.


Brain | 2010

Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis

Ralf A. Linker; De-Hyung Lee; Seray Demir; Stefan Wiese; Niels Kruse; Ines Siglienti; Ellen Gerhardt; Harald Neumann; Michael Sendtner; Fred Lühder; Ralf Gold

Brain-derived neurotrophic factor plays a key role in neuronal and axonal survival. Brain-derived neurotrophic factor is expressed in the immune cells in lesions of experimental autoimmune encephalomyelitis and multiple sclerosis, thus potentially mediating neuroprotective effects. We investigated the functional role of brain-derived neurotrophic factor in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Mice deficient for brain-derived neurotrophic factor in immune cells displayed an attenuated immune response in the acute phase of experimental autoimmune encephalomyelitis, but progressive disability with enhanced axonal loss in the chronic phase of the disease. In mice deficient for central nervous system-derived brain-derived neurotrophic factor via glial fibrillary acidic protein-crescentin-mediated deletion, a more severe course of experimental autoimmune encephalomyelitis and an overall increased axonal loss was observed. In a lentiviral approach, injection of brain-derived neurotrophic factor-overexpressing T cells led to a less severe course of experimental autoimmune encephalomyelitis and direct axonal protection. Our data imply a functional role of brain-derived neurotrophic factor in autoimmune demyelination by mediating axon protection.


PLOS ONE | 2011

Efficacy of Fumaric Acid Esters in the R6/2 and YAC128 Models of Huntington's Disease

Gisa Ellrichmann; Elisabeth Petrasch-Parwez; De-Hyung Lee; Christiane Reick; Larissa Arning; Carsten Saft; Ralf Gold; Ralf A. Linker

Huntingtons disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor “nuclear factor E2-related factor 2” (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted.


Muscle & Nerve | 2008

Subcutaneous immunoglobulin infusion: A new therapeutic option in chronic inflammatory demyelinating polyneuropathy

De-Hyung Lee; Ralf A. Linker; Walter Paulus; Christiane Schneider-Gold; Andrew T. Chan; Ralf Gold

Intravenous application of immunoglobulins (IVIg) is an effective and usually well tolerated yet costly therapeutic regimen in chronic inflammatory demyelinating polyneuropathy (CIDP). We report two CIDP patients treated with subcutaneous infusion of immunoglobulins (SCIg) after IVIg therapy was shown to be effective. Application of SCIg was well tolerated, easy to manage, and led to stabilization of the disease course. SCIg may represent an effective new therapeutic option in CIDP and is associated with a cost reduction of at least 50% compared to IVIg therapy. Muscle Nerve, 2007


International Journal of Molecular Sciences | 2012

Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

De-Hyung Lee; Ralf Gold; Ralf A. Linker

Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE.


JAMA Neurology | 2010

Successful Management of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy and Immune Reconstitution Syndrome in a Patient With Multiple Sclerosis

Alexandra Schröder; De-Hyung Lee; Kerstin Hellwig; Carsten Lukas; Ralf A. Linker; Ralf Gold

OBJECTIVE To describe a case of successful clinical management of natalizumab-associated progressive multifocal leukoencephalopathy (PML) and immune reconstitution syndrome (IRIS) in a patient with multiple sclerosis. DESIGN Case report. SETTING University hospital. PATIENT A 41-year-old woman with relapsing-remitting multiple sclerosis developed PML after 29 natalizumab infusions. INTERVENTIONS Immediate plasma exchange was combined for removal of natalizumab with application of mefloquine and mirtazapine to limit viral replication and oligodendrocyte infection. A subsequent IRIS was treated with glucocorticosteroids. RESULTS After 3 months of treatment, cerebrospinal fluid tested negative for JC virus. There was a favorable outcome, and the Expanded Disability Status Scale score remained stable at 3.5 compared with before PML. CONCLUSIONS In the setting of early diagnosis and consequent treatment, natalizumab-associated PML can be well managed in some cases. This situation differs from the course of PML in other conditions, eg, after the application of depleting monoclonal antibodies, in which irreversible cellular effects are associated with very high mortality.


Journal of Neuroimmunology | 2008

IL-6 transsignalling modulates the early effector phase of EAE and targets the blood-brain barrier.

Ralf A. Linker; Fred Lühder; Karl-Josef Kallen; De-Hyung Lee; Britta Engelhardt; Stefan Rose-John; Ralf Gold

Interleukin-6 (IL-6) plays a crucial role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). It exerts its cellular effects by a membrane-bound IL-6 receptor (IL-6R), or, alternatively, by forming a complex with the soluble IL-6R (sIL-6R), a process named IL-6 transsignalling. Here we investigate the role of IL-6 transsignalling in myelin basic protein (MBP)-induced EAE in the Lewis rat. In vivo blockade of IL-6 transsignalling by the injection of a specifically designed gp130-Fc fusion protein significantly delayed the onset of adoptively transferred EAE in comparison to control rats injected with PBS or isotype IgG. Histological evaluation on day 3 after immunization revealed reduced numbers of T cells and macrophages in the lumbar spinal cord of gp130-Fc treated rats. At the same time, blockade of IL-6 transsignalling resulted in a reduced expression of vascular cell adhesion molecule-1 on spinal cord microvessels while experiments in cell culture failed to show a direct effect on the regulation of endothelial adhesion molecules. In experiments including active EAE and T cell culture, inhibition of IL-6 transsignalling mildly increased T cell proliferation, but did not change severity of active MBP-EAE or regulate Th1/Th17 responses. We conclude that IL-6 transsignalling may play a role in autoimmune inflammation of the CNS mainly by regulating early expression of adhesion molecules, possibly via cellular networks at the blood-brain barrier.


Acta Neuropathologica | 2012

Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination.

De-Hyung Lee; Eva Geyer; Anne-Christine Flach; Klaus Jung; Ralf Gold; Alexander Flügel; Ralf A. Linker; Fred Lühder

Brain-derived neurotrophic factor (BDNF) is involved in neuronal and glial development and survival. While neurons and astrocytes are its main cellular source in the central nervous system (CNS), bioactive BDNF is also expressed in immune cells and in lesions of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Previous data revealed that BDNF exerts neuroprotective effects in myelin oligodendrocyte glycoprotein-induced EAE. Using a conditional knock-out model with inducible deletion of BDNF, we here show that clinical symptoms and structural damage are increased when BDNF is absent during the initiation phase of clinical EAE. In contrast, deletion of BDNF later in the disease course of EAE did not result in significant changes, either in the disease course or in axonal integrity. Bone marrow chimeras revealed that the deletion of BDNF in the CNS alone, with no deletion of BDNF in the infiltrating immune cells, was sufficient for the observed effects. Finally, the therapeutic effect of glatiramer acetate, a well-characterized disease-modifying drug with the potential to modulate BDNF expression, was partially reversed in mice in which BDNF was deleted shortly before the onset of disease. In summary, our data argue for an early window of therapeutic opportunity where modulation of BDNF may exert neuroprotective effects in experimental autoimmune demyelination.

Collaboration


Dive into the De-Hyung Lee's collaboration.

Top Co-Authors

Avatar

Ralf A. Linker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ralf Gold

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Lühder

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Arndt Manzel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Hammer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantin Huhn

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge