Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where De-min Jiao is active.

Publication


Featured researches published by De-min Jiao.


Journal of Nutritional Biochemistry | 2014

Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway

Qing-yong Chen; Ying Zheng; De-min Jiao; Fang-yuan Chen; Huizhen Hu; Yuquan Wu; Jia Song; Jie Yan; Li-jun Wu; Guiyuan Lv

Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis. In this study, we examined the influence of curcumin on in vitro invasiveness of human lung cancer cells and the expressions of Rac1. The results indicate that curcumin at 10 μM slightly reduced the proliferation of 801D lung cancer cells but showed an obvious inhibitory effect on epidermal growth factor or transforming growth factor β1-induced lung cancer cell migration and invasion. Meanwhile, we demonstrated that the suppression of invasiveness correlated with inhibition of Rac1/PAK1 signaling pathways and matrix metalloproteinase (MMP) 2 and 9 protein expression by combining curcumin treatment with the methods of Rac1 gene silence and overexpression in lung cancer cells. Laser confocal microscope also showed that Rac1-regulated actin cytoskeleton rearrangement may be involved in anti-invasion effect of curcumin on lung cancer cell. At last, through xenograft experiments, we confirmed the connection between Rac1 and the growth and metastasis inhibitory effect of curcumin in vivo. In summary, these data demonstrated that low-toxic levels of curcumin could efficiently inhibit migration and invasion of lung cancer cells through inhibition of Rac1/PAK1 signaling pathway and MMP-2 and MMP-9 expression, which provided a novel insight into the molecular mechanism of curcumin against lung cancer.


Oncotarget | 2016

MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/ Akt/mTOR pathway

Qing-yong Chen; De-min Jiao; Yuquan Wu; Jun Chen; Jian Wang; Xiali Tang; Hao Mou; Huizhen Hu; Jia Song; Jie Yan; Li-jun Wu; Jianyan Chen; Zhiwei Wang

MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer.


International Journal of Molecular Medicine | 2011

Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs

Qing-yong Chen; Li-Qun Xu; De-min Jiao; Qing-Hua Yao; Yan-Yi Wang; Huizhen Hu; Yuquan Wu; Jia Song; Jie Yan; Li-jun Wu

Rac1, an intracellular signal transducer, regulates a variety of cell functions, including the organization of the cytoskeleton, cell migration, and invasion. Overexpression of Rac1 has been reported in several human cancers. However, the underlying mechanisms are not well understood. In the present study, we evaluated the possibility of Rac1 as an appropriate molecular target for cancer gene therapy. The expression of Rac1 in 150 primary non-small cell lung cancer tissues (NSCLC) and 30 normal paraneoplastic lung tissues was determined by immunohistochemical staining, and the correlation of Rac1 overexpression with clinicopathological factors was evaluated. Overexpression of Rac1 was detected in 94 of 150 lung cancer specimens, the incidence rate being higher than that in normal lung tissue specimens. In addition, overexpression of Rac1 was also associated with poor differentiation, high TNM stage, and lymph node metastasis in NSCLC patients. Moreover, RNAi-mediated suppression of Rac1 expression reduced lamellipodia formation, migration and invasion potential of a lung cancer cell carcinoma cell line, 801D. Down-regulation of Rac1 expression also reduced the expression of Pak1. NSC23766, an inhibitor of Rac1 activity, could also inhibit lung cancer cell migration, invasion and induce rearrangements of the actin cytoskeleton. Furthermore, the suppression of Rac1 expression also sensitized cells to antitumor drugs. These results indicate that the overexpression of Rac1 is tightly associated with an aggressive phenotype of lung cancer cells. Therefore, we proposed that Rac1 could be a potential molecular target of gene therapy by RNAi-targeting in lung cancer cells.


Molecular and Cellular Biochemistry | 2012

Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells

Qing-yong Chen; Jianguo Shi; Qing-Hua Yao; De-min Jiao; Yan-Yi Wang; Huizhen Hu; Yuquan Wu; Jia Song; Jie Yan; Li-jun Wu

We previously reported that curcumin inhibited lung cancer A549 cells growth and promoted cell apoptosis in vitro. In this study, we further examined the apoptosis-related parameters, including lysosomal damage and cathepsin activation, in A549 cells exposed to curcumin. We found that curcumin caused lysosomal membrane permeabilization (LMP) and cytosolic relocation of cathepsin B (cath B) and cathepsin D (cath D). However, only Z-FA-fmk (a cath B inhibitor) but not pepstatin A (a cath D inhibitor) inhibited curcumin-induced cell apoptosis, mitochondrial membrane potential loss, and cytochrome c release. The antioxidant N-acetylcysteine and glutathione attenuated LMP, suggesting that lysosomal destabilization was dependent on the elevation of reactive oxygen species and which precedes mitochondrial dysfunction. These findings indicated a novel pathway for curcumin regulation of ROS-lysosomal–mitochondrial pathway and provided the key mechanism of regulation of LMP in cell apoptosis, which may be exploited for cancer treatment.


International Journal of Oncology | 2012

Expression analysis of Cdc42 in lung cancer and modulation of its expression by curcumin in lung cancer cell lines.

Qing-Yong Chen; De-min Jiao; Qing-Hua Yao; Jie Yan; Jia Song; Fang-yuan Chen; Guohua Lu; Jianying Zhou

Cdc42, a Rho GTPase family member, is involved in cell transformation, proliferation, survival, invasion and metastasis of human cancer cells. Overexpression of Cdc42 has been reported in several types of human cancer. However, the underlying mechanisms are not well understood. The present study showed that Cdc42 was overexpressed in 80 of 110 primary lung cancer patients, and overexpression of Cdc42 was significantly associated with high TNM stage and lymph node metastasis. Moreover, RNAi-mediated suppression of Cdc42 expression reduced actin filopodia formation, migration and invasion potential of a highly metastatic lung cancer cell line, 801D. In parallel, 801D cells were treated with curcumin and the effect on the expression of the Cdc42 gene at the transcriptional and translational levels was analyzed by RT-PCR and Western blotting. Curcumin inhibited cell migration, invasion and downregulated Cdc42 gene and Cdc42-related target gene expression in 801D cells. It also induced rearrangements of the actin cytoskeleton. These effects mimicked those of Cdc42 knockdown. Furthermore, xenograft experiments confirmed the suppression of tumor growth and invasion in vivo, which was due to the effect of curcumin and the inhibition of Cdc42 by curcumin. Our results showing the downregulation of Cdc42 expression by curcumin in lung cancer cells taken together with the clinical data suggest a potential therapeutic role for curcumin in inducing Cdc42-mediated inhibition of invasion of lung cancer cells.


Oncotarget | 2016

miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET

Qing-yong Chen; De-min Jiao; Jian Wang; Huizhen Hu; Xiali Tang; Jun Chen; Hao Mou; Wei Lu

MicroRNAs (miRNAs) play a critical role in drug resistance and epithelial-mesenchymal transition (EMT). The aims of this study were to explore the potential role of miR-206 in governing cisplatin resistance and EMT in lung cancer cells. We found that both lung adenocarcinoma A549 cisplatin-resistant cells (A549/DDP) and H1299 cisplatin-resistant cells (H1299/DDP) acquired mesenchymal features and were along with low expression of miR-206 and high migration and invasion abilities. Ectopic expression of miR-206 mimics inhibited cisplatin resistance, reversed the EMT phenotype, decreased the migration and invasion in these DDP-resistant cells. In contrast, miR-206 inhibitors increased cisplatin resistance, EMT, cell migration and invasion in non-DDP-resistant cells. Furthermore, we found that MET is the direct target of miR-206 in lung cancer cells. Knockdown of MET exhibited an EMT and DDP resistant inhibitory effect on DDP-resistant cells. Conversely, overexpression of MET in non-DDP- resistant cells produced a promoting effect on cell EMT and DDP resistance. In lung adenocarcinoma tissues, we demonstrated that low expression of miR-206 were also correlated with increased cisplatin resistance and MET expression. In addition, we revealed that miR-206 overexpression reduced cisplatin resistance and EMT in DDP-resistant cells, partly due to inactivation of MET/PI3K/AKT/mTOR signaling pathway, and subsequent downregulation of MDR1, ZEB1 and Snail expression. Finally, we found that miR-206 could also sensitize A549/DDP cells to cisplatin in mice model. Taken together, our study implied that activation of miR-206 or inactivation of its target gene pathway could serve as a novel approach to reverse cisplatin resistance in lung adenocarcinomas cells.


Molecular Therapy - Oncolytics | 2016

Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

De-min Jiao; Jian Wang; Wei Lu; Xiali Tang; Jun Chen; Hao Mou; Qing-yong Chen

The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways.


Tumor Biology | 2015

Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer

Jinhua Hu; Juan Xu; Yuquan Wu; Qingyong Chen; Wei Zheng; Xiaojun Lu; Chun Zhou; De-min Jiao

MicroRNAs (miRNAs) are widely recognized as key players in cancer progression and drug resistance, but less is known about the role of miRNAs in triple-negative (estrogen receptor, progesterone receptor, and HER-2/neu) breast cancer (TNBC). The aim of the present study was to examine the expression profile of miRNAs and to explore their possible roles in TNBC. Differentially expressed miRNAs were identified by miRNA microarray and verified by quantitative real-time polymerase chain reaction. The expression of miR-93 was assessed by in situ hybridization in 119 cases of breast cancer. Cell proliferation potential was examined by MTT assay. Cell migration and invasion abilities were evaluated by a wound healing assay and transwell invasion or migration assay. Seven upregulated and ten downregulated miRNAs in TNBC were identified. The miR-93 expression level in TNBC tissues was significantly higher than that in non-triple-negative breast cancer tissues. The potentials of proliferation, invasion, and metastasis in breast cancer MCF-7 cells were promoted by ectopic transfection of miR-93. Our study found several distinct differentially expressed miRNAs in TNBC, as compared to non-triple-negative breast cancer. Among them, miR-93 may be considered as a biomarker associated with the biological and clinical characteristics of human TNBC.


Molecular and Cellular Biochemistry | 2013

Silence of ezrin modifies migration and actin cytoskeleton rearrangements and enhances chemosensitivity of lung cancer cells in vitro.

Qing-yong Chen; Wei Xu; De-min Jiao; Li-jun Wu; Jia Song; Jie Yan; Jianguo Shi

Ezrin, primarily acts as a linker between the plasma membrane and the cytoskeleton, is involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion, motility, and modulation of signaling pathways. Although ezrin is now recognized as a key component in tumor metastasis, its roles and the underlying mechanisms remain unclear. In the present study, we chose highly metastatic human lung carcinoma 95D cells, which highly express the ezrin proteins, as a model to examine the functional roles of ezrin in tumor suppression. An ezrin-silenced 95D cell line was established using lentivirus-mediated short hairpin RNA method. CCK-8 assay and soft agar assay analysis showed that downregulation of ezrin significantly suppressed the tumorigenicity and proliferation of 95D cells in vitro. cell migration and invasion studies showed that ezrin-specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. In parallel, it also induced rearrangements of the actin cytoskeleton. Flow cytometry assay showed that changes in the ezrin protein level significantly affected the cell cycle distribution and eventual apoptosis. Furthermore, further studies showed that ezrin regulated the expression level of E-cadherin and CD44, which are key molecules involved in cell growth, migration, and invasion. Meanwhile, the suppression of ezrin expression also sensitized cells to antitumor drugs. Altogether, our results demonstrated that ezrin played an important role in the tumorigenicity and metastasis of lung cancer cells, which will benefit the development of therapeutic strategy for lung cancer.


Oncology Research | 2012

Downregulation of LIMK1 level inhibits migration of lung cancer cells and enhances sensitivity to chemotherapy drugs.

Qing-yong Chen; De-min Jiao; Huizhen Hu; Jia Song; Jie Yan; Li-jun Wu; Li-Qun Xu

LIM kinase 1 (LIMK1) is a member of a novel class of serine-threonine protein kinases, which plays an important role in malignant transformation. High expression of LIM kinase 1 (LIMK1) has been detected in various invasive cancers. Here, we showed that LIMK1 was overexpressed in non-small cell lung cancer tissues (NSCLC) and cell lines. Expression of LIMK1 was detected in 115 of 150 lung cancer tissues, the frequency being more significant than in lung tissues. In addition, overexpression of LIMK1 was also associated with high TNM stage and lymph node metastasis in NSCLC patients. Moreover, RNAi-mediated suppression of LIMK1 expression markedly inhibited migration and invasion of 801D lung cancer cells. Furthermore, silencing of LIMK1 sensitized 801D cells to chemotherapeutic drugs of cisplatin and gemcitabine. These results indicate that the overexpression of LIMK1 is tightly associated with an aggressive phenotype of lung cancer cells, knockdown of LIMK1 suppressed cell migration and invasion, enhanced chemosensitivity, suggesting a potential therapeutic target for lung cancer.

Collaboration


Dive into the De-min Jiao's collaboration.

Top Co-Authors

Avatar

Qing-yong Chen

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan-Yi Wang

Hangzhou Dianzi University

View shared research outputs
Top Co-Authors

Avatar

Lishan Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Xu

Zhejiang Chinese Medical University

View shared research outputs
Top Co-Authors

Avatar

Yong Yang

Hangzhou Dianzi University

View shared research outputs
Top Co-Authors

Avatar

Yuquan Wu

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Guiyuan Lv

Zhejiang Chinese Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-wei Zhan

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge