Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean B. Andropoulos is active.

Publication


Featured researches published by Dean B. Andropoulos.


The Journal of Thoracic and Cardiovascular Surgery | 2010

Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring

Dean B. Andropoulos; Jill V. Hunter; David P. Nelson; Stephen A. Stayer; Ann R. Stark; E. Dean McKenzie; Jeffrey S. Heinle; Daniel E. Graves; Charles D. Fraser

BACKGROUND New intraparenchymal brain injury on magnetic resonance imaging is observed in 36% to 73% of neonates after cardiac surgery with cardiopulmonary bypass. Brain immaturity in this population is common. We performed brain magnetic resonance imaging before and after neonatal cardiac surgery, using a high-flow cardiopulmonary bypass protocol, hypothesizing that brain injury on magnetic resonance imaging would be associated with brain immaturity. METHODS Cardiopulmonary bypass protocol included 150 mL . kg(-1) . min(-1) flows, pH stat management, hematocrit > 30%, and high-flow antegrade cerebral perfusion. Regional brain oxygen saturation was monitored, with a treatment protocol for regional brain oxygen saturation < 50%. Brain magnetic resonance imaging, consisting of T1-, T2-, and diffusion-weighted imaging, and magnetic resonance spectroscopy were performed preoperatively, 7 days postoperatively, and at age 3 to 6 months. RESULTS Twenty-four of 67 patients (36%) had new postoperative white matter injury, infarction, or hemorrhage, and 16% had new white matter injury. Associations with preoperative brain injury included low brain maturity score (P = .002). Postoperative white matter injury was associated with single-ventricle diagnosis (P = .02), preoperative white matter injury (P < .001), and low brain maturity score (P = .05). Low brain maturity score was also associated with more severe postoperative brain injury (P = .01). Forty-five patients had a third scan, with a 27% incidence of new minor lesions, but 58% of previous lesions had partially or completely resolved. CONCLUSIONS We observed a significant incidence of both pre- and postoperative magnetic resonance imaging abnormality and an association with brain immaturity. Many lesions resolved in the first 6 months after surgery. Timing of delivery and surgery with bypass could affect the risk of brain injury.


Pediatric Anesthesia | 2005

A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients

Tia A. Tortoriello; Stephen A. Stayer; Antonio R. Mott; E. Dean McKenzie; Charles D. Fraser; Dean B. Andropoulos; Anthony C. Chang

Background : Near‐infrared spectroscopy (NIRS) is a noninvasive optical monitor of regional cerebral oxygen saturation (rSO2). The aim of this study was to validate the use of NIRS by cerebral oximetry in estimating invasively measured mixed venous oxygen saturation (SvO2) in pediatric postoperative cardiac surgery patients.


Anesthesia & Analgesia | 2004

Neurological monitoring for congenital heart surgery.

Dean B. Andropoulos; Stephen A. Stayer; Laura K. Diaz; Chandra Ramamoorthy

The incidence of neurological complications after pediatric cardiac surgery ranges from 2% to 25%. The causes are multifactorial and include preoperative brain malformations, perioperative hypoxemia and low cardiac output states, sequelae of cardiopulmonary bypass, and deep hypothermic circulatory arrest. Neurological monitoring devices are readily available and the anesthesiologist can now monitor the brain during pediatric cardiac surgery. In this review we discuss near-infrared cerebral oximetry, transcranial Doppler ultrasound, and electroencephalographic monitors for use during congenital heart surgery. After review of the basic principles of each monitoring modality, we discuss their uses during pediatric heart surgery. We present evidence that multimodal neurological monitoring in conjunction with a treatment algorithm may improve neurological outcome for patients undergoing congenital heart surgery and present one such algorithm.


Pediatrics | 2015

Neurodevelopmental Outcomes After Cardiac Surgery in Infancy

J. William Gaynor; Christian Stopp; David Wypij; Dean B. Andropoulos; Joseph Atallah; Andrew M. Atz; John Beca; Mary T. Donofrio; Kim Duncan; Nancy S. Ghanayem; Caren S. Goldberg; Hedwig H. Hövels-Gürich; Fukiko Ichida; Jeffrey P. Jacobs; Robert Justo; Beatrice Latal; Jennifer S. Li; William T. Mahle; Patrick S. McQuillen; Shaji C. Menon; Victoria L. Pemberton; Nancy A. Pike; Christian Pizarro; Lara S. Shekerdemian; Anne Synnes; Ismee A. Williams; David C. Bellinger; Jane W. Newburger

BACKGROUND: Neurodevelopmental disability is the most common complication for survivors of surgery for congenital heart disease (CHD). METHODS: We analyzed individual participant data from studies of children evaluated with the Bayley Scales of Infant Development, second edition, after cardiac surgery between 1996 and 2009. The primary outcome was Psychomotor Development Index (PDI), and the secondary outcome was Mental Development Index (MDI). RESULTS: Among 1770 subjects from 22 institutions, assessed at age 14.5 ± 3.7 months, PDIs and MDIs (77.6 ± 18.8 and 88.2 ± 16.7, respectively) were lower than normative means (each P < .001). Later calendar year of birth was associated with an increased proportion of high-risk infants (complexity of CHD and prevalence of genetic/extracardiac anomalies). After adjustment for center and type of CHD, later year of birth was not significantly associated with better PDI or MDI. Risk factors for lower PDI were lower birth weight, white race, and presence of a genetic/extracardiac anomaly (all P ≤ .01). After adjustment for these factors, PDIs improved over time (0.39 points/year, 95% confidence interval 0.01 to 0.78; P = .045). Risk factors for lower MDI were lower birth weight, male gender, less maternal education, and presence of a genetic/extracardiac anomaly (all P < .001). After adjustment for these factors, MDIs improved over time (0.38 points/year, 95% confidence interval 0.05 to 0.71; P = .02). CONCLUSIONS: Early neurodevelopmental outcomes for survivors of cardiac surgery in infancy have improved modestly over time, but only after adjustment for innate patient risk factors. As more high-risk CHD infants undergo cardiac surgery and survive, a growing population will require significant societal resources.


Anesthesiology | 2001

Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics.

Shannon M. Rivenes; Mark B. Lewin; Stephen A. Stayer; Sabrina T. Bent; Heather M. Schoenig; E. Dean McKenzie; Charles D. Fraser; Dean B. Andropoulos

BackgroundThe cardiovascular effects of halogenated anesthetic agents in children with normal hearts have been studied, but data in children with cardiac disease are limited. This study compared the effects of halothane, isoflurane, sevoflurane, and fentanyl–midazolam on systemic and pulmonary hemodynamics and myocardial contractility in patients with congenital heart disease. MethodsFifty-four patients younger than age 14 scheduled to undergo congenital heart surgery were randomized to receive halothane, sevoflurane, isoflurane, or fentanyl–midazolam. Cardiovascular and echocardiographic data were recorded at baseline and at randomly ordered 1 and 1.5 minimum alveolar concentrations, or predicted equivalent fentanyl–midazolam plasma concentrations. The shortening fraction and ejection fraction (using the modified Simpson rule) were calculated. Cardiac index was assessed by the velocity–time integral method. ResultsHalothane caused a significant decrease in mean arterial pressure, ejection fraction, and cardiac index, preserving only heart rate at baseline levels. Fentanyl–midazolam in combination caused a significant decrease in cardiac index secondary to a decrease in heart rate; contractility was maintained. Sevoflurane maintained cardiac index and heart rate and had less profound hypotensive and negative inotropic effects than halothane. Isoflurane preserved both cardiac index and ejection fraction, had less suppression of mean arterial pressure than halothane, and increased heart rate. ConclusionsIsoflurane and sevoflurane preserved cardiac index, and isoflurane and fentanyl–midazolam preserved myocardial contractility at baseline levels in this group of patients with congenital heart disease. Halothane depressed cardiac index and myocardial contractility.


Anesthesiology | 1999

Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets.

Akif Ündar; Dean B. Andropoulos; Charles D. Fraser

Background Deep hypothermic circulatory arrest is used in neonatal cardiac surgery. Recent work has suggested improved neurologic recovery after deep hypothermic arrest with pH-stat cardiopulmonary bypass (CPB) compared with alpha-stat CPB. This study examined cortical oxygen saturation (ScO(2)), cortical blood flow (CBF), and cortical physiologic recovery in relation to deep hypothermic arrest with alpha-stat or pH-stat CPB. Methods Sixteen piglets were cooled with pH-stat or alpha-stat CPB to 19 [degree sign]C (cortex) and subjected to 60 min of circulatory arrest, followed by CPB reperfusion and rewarming and separation from CPB. Near infrared spectroscopy and laser Doppler flowmetry were used to monitor ScO(2) and CBF. Cortical physiologic recovery was assessed 2 h after the piglets were separated from CPB by cortical adenosine triphosphate concentrations, cortical water content, CBF, and ScO(2). Results During CPB cooling, ScO(2) increased more with pH-stat than with alpha-stat bypass (123 +/- 33% vs. 80 +/- 25%); superficial and deep CBF were also greater with pH-stat than with alpha-stat bypass (22 +/- 25% vs. -56 +/- 22%, 3 +/- 19% vs. -29 +/- 28%). During arrest, ScO(2) half-life was greater with pH-stat than with alpha-stat bypass (10 +/- 2 min vs. 7 +/- 2 min), and cortical oxygen consumption lasted longer with pH-stat than with alpha-stat bypass (36 +/- 8 min vs. 25 +/- 8 min). During CPB reperfusion, superficial and deep CBF were less with alpha-stat than with pH-stat bypass (-40 +/- 22% vs. 10 +/- 39%, -38 +/- 28% vs. 5 +/- 28%). After CPB, deep cortical adenosine triphosphate and CBF were less with alpha-stat than with pH-stat bypass (11 +/- 6 pmole/mg vs. 17 +/- 8 pmole/mg, -24 +/- 16% vs. 16 +/- 32%); cortical water content was greater with alpha-stat than with pH-stat bypass (superficial: 82.4 +/- 0.3% vs. 81.8 +/- 1%, deep: 79.1 +/- 2% vs. 78 +/- 1.6%). Conclusions Cortical deoxygenation during hypothermic arrest was slower after pH-stat CPB. pH-stat bypass increased the prearrest ScO(2) and arrest ScO(2) half-life, to increase the cortical oxygen supply and slow cortical oxygen consumption. Improved cortical physiologic recovery after hypothermic arrest was suggested with pH-stat management.


Anesthesia & Analgesia | 2001

The optimal length of insertion of central venous catheters for pediatric patients.

Dean B. Andropoulos; Sabrina T. Bent; B. S. Skjonsby; Stephen A. Stayer

Incorrect positioning of central venous catheters (CVC) in infants and children may lead to serious complications such as perforation of the heart or great vessels. CVC position is not usually assessed until the first postoperative chest radiograph, potentially leaving malposition undetected for several hours. We studied a series of 452 right internal jugular and subclavian catheter placements in infants and children undergoing surgery for congenital heart disease, and measured the distance from the skin insertion site to the radiographic junction of the superior vena cava and right atrium (RA). Based on these data, the following formulae predict that a CVC will be positioned above the RA 97% of the time: correct length of insertion (cm) = (height in cm/10) − 1 for patients ≤100 cm in height, and (height in cm/10) − 2 for patients >100 cm in height. Weight-based recommendations were also developed which predict placement of CVC above the RA 98% of the time.


Anesthesia & Analgesia | 1999

A controlled study of transesophageal echocardiography to guide central venous catheter placement in congenital heart surgery patients.

Dean B. Andropoulos; Stephen A. Stayer; Sabrina T. Bent; Carlos J. Campos; Louis I. Bezold; Melquiades Alvarez; Charles D. Fraser

UNLABELLED Transesophageal echocardiography (TEE) and central venous catheter (CVC) placement are often used during congenital cardiac surgery. Complications of CVC placement include cardiac perforation, inadvertent arterial placement, and erroneous hemodynamic data from unrecognized malposition. In this study, we used a prospective, randomized, controlled design to evaluate the use of TEE to guide depth of insertion and confirm superior vena cava cannulation, and to improve the percentage of correctly placed CVCs and reduce complications of CVC placement. One hundred forty-five patients were studied. Eighty patients were randomized to have subclavian vein insertion, 64 to have internal jugular insertion, and 1 to have external jugular insertion of CVC. TEE-guided CVC placement resulted in 100% correct placement when assessed by preoperative TEE, versus 86% in the control group (72 of 72 vs. 63 of 73; P = 0.01). There was no difference in correct placement between the two groups when assessed by postoperative chest radiograph (81.9% TEE versus 75.3% control; P = not significant). One significant complication, a superior vena cava perforation, occurred in the control group. Time to placement was 9.6 min in the TEE group versus 8.0 min in the control group (P = 0.015). IMPLICATIONS Transesophageal echocardiography can be used to guide central venous catheter placement in congenital heart surgery. Central venous catheters that seem to be located high in the right atrium by chest radiograph in these patients are often actually in the superior vena cava and pose little risk of cardiac perforation.


Pediatric Anesthesia | 2014

The association between brain injury, perioperative anesthetic exposure, and 12‐month neurodevelopmental outcomes after neonatal cardiac surgery: a retrospective cohort study

Dean B. Andropoulos; Hasan B. Ahmad; Taha R. Haq; Ken M. Brady; Stephen A. Stayer; Marcie R. Meador; Jill V. Hunter; Carlos Rivera; Robert G. Voigt; Marie Turcich; Cathy Q. He; Lara S. Shekerdemian; Heather A. Dickerson; Charles D. Fraser; E. Dean McKenzie; Jeffrey S. Heinle; R. Blaine Easley

Adverse neurodevelopmental outcomes are observed in up to 50% of infants after complex cardiac surgery. We sought to determine the association of perioperative anesthetic exposure with neurodevelopmental outcomes at age 12 months in neonates undergoing complex cardiac surgery and to determine the effect of brain injury determined by magnetic resonance imaging (MRI).


Anesthesia & Analgesia | 2002

Pulmonary-to-systemic blood flow ratio effects of sevoflurane, isoflurane, halothane, and fentanyl/midazolam with 100% oxygen in children with congenital heart disease.

Tracy H. Laird; Stephen A. Stayer; Shannon M. Rivenes; Mark B. Lewin; E. Dean McKenzie; Charles D. Fraser; Dean B. Andropoulos

The cardiovascular effects of volatile anesthetics in children with congenital heart disease have been studied, but there are limited data on the effects of anesthetics on pulmonary-to-systemic blood flow ratio (Qp:Qs) in patients with intracardiac shunting. In this study, we compared the effects of halothane, isoflurane, sevoflurane, and fentanyl/midazolam on Qp:Qs and myocardial contractility in patients with atrial (ASD) or ventricular (VSD) septal defects. Forty patients younger than 14 yr old scheduled to undergo repair of ASD or VSD were randomized to receive halothane, sevoflurane, isoflurane, or fentanyl/midazolam. Cardiovascular and echocardiographic data were recorded at baseline, randomly ordered 1 and 1.5 mean alveolar anesthetic concentration (MAC) levels, or predicted equivalent fentanyl/midazolam plasma levels. Ejection fraction (using the modified Simpson’s rule) was calculated. Systemic (Qs) and pulmonary (Qp) blood flow was echocardiographically assessed by the velocity-time integral method. Qp:Qs was not significantly affected by any of the four regimens at either anesthetic level. Left ventricular systolic function was mildly depressed by isoflurane and sevoflurane at 1.5 MAC and depressed by halothane at 1 and 1.5 MAC. Sevoflurane, halothane, isoflurane, or fentanyl/midazolam in 1 or 1.5 MAC concentrations or their equivalent do not change Qp:Qs in patients with isolated ASD or VSD.

Collaboration


Dive into the Dean B. Andropoulos's collaboration.

Top Co-Authors

Avatar

Stephen A. Stayer

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Charles D. Fraser

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ken M. Brady

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

E. Dean McKenzie

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald B. Easley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

R. Blaine Easley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig G. Rusin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge