Dean Cvetko
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dean Cvetko.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Agustin Schiffrin; Andreas Riemann; Willi Auwärter; Yan Pennec; Alex Weber-Bargioni; Dean Cvetko; Albano Cossaro; A. Morgante; Johannes V. Barth
The engineering of complex architectures from functional molecules on surfaces provides new pathways to control matter at the nanoscale. In this article, we present a combined study addressing the self-assembly of the amino acid l-methionine on Ag(111). Scanning tunneling microscopy data reveal spontaneous ordering in extended molecular chains oriented along high-symmetry substrate directions. At intermediate coverages, regular biomolecular gratings evolve whose periodicity can be tuned at the nanometer scale by varying the methionine surface concentration. Their characteristics and stability were confirmed by helium atomic scattering. X-ray photoemission spectroscopy and high-resolution scanning tunneling microscopy data reveal that the l-methionine chaining is mediated by zwitterionic coupling, accounting for both lateral links and molecular dimerization. This methionine molecular recognition scheme is reminiscent of sheet structures in amino acid crystals and was corroborated by molecular mechanics calculations. Our findings suggest that zwitterionic assembly of amino acids represents a general construction motif to achieve biomolecular nanoarchitectures on surfaces.
Nano Letters | 2010
M. Dell'Angela; Gregor Kladnik; Albano Cossaro; Alberto Verdini; Masha Kamenetska; I. Tamblyn; Su Ying Quek; Jeffrey B. Neaton; Dean Cvetko; A. Morgante; Latha Venkataraman
Using photoemission spectroscopy, we determine the relationship between electronic energy level alignment at a metal-molecule interface and single-molecule junction transport data. We measure the position of the highest occupied molecular orbital (HOMO) relative to the Au metal Fermi level for three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet and resonant X-ray photoemission spectroscopy. We compare these results to scanning tunnelling microscope-based break-junction measurements of single molecule conductance and to first-principles calculations. We find that the energy difference between the HOMO and Fermi level for the three molecules adsorbed on Au(111) correlate well with changes in conductance and agree well with quasiparticle energies computed from first-principles calculations incorporating self-energy corrections. On the Au(110) that presents Au atoms with lower-coordination, critical in break-junction conductance measurements, we see that the HOMO level shifts further from the Fermi level. These results provide the first direct comparison of spectroscopic energy level alignment measurements with single molecule junction transport data.
Physical Review B | 2008
Kevin Knox; Shancai Wang; A. Morgante; Dean Cvetko; Andrea Locatelli; Tevfik Onur Menteş; Miguel Á. Niño; Philip Kim; Richard M. Osgood
We report measurements of the electronic structure and surface morphology of exfoliated graphene on an insulating substrate using angle-resolved photoemission and low-energy electron diffraction. Our results show that, although exfoliated graphene is microscopically corrugated, the valence band retains a massless fermionic dispersion with a Fermi velocity of
ACS Nano | 2010
A. Locatelli; Kevin Knox; Dean Cvetko; Tevfik Onur Menteş; Miguel Á. Niño; Shancai Wang; Mehmet Yilmaz; Philip Kim; Richard M. Osgood; A. Morgante
\ensuremath{\sim}{10}^{6}\text{ }\text{m}/\text{s}
Chemical Science | 2014
Arunabh Batra; Dean Cvetko; Gregor Kladnik; Olgun Adak; Claudia Cardoso; Andrea Ferretti; Deborah Prezzi; Elisa Molinari; A. Morgante; Latha Venkataraman
. We observe a close relationship between the morphology and electronic structure, which suggests that controlling the interaction between graphene and the supporting substrate is essential for graphene device applications.
Nature Communications | 2012
Arunabh Batra; Gregor Kladnik; Hector Vazquez; Jeffrey S. Meisner; Luca Floreano; Colin Nuckolls; Dean Cvetko; A. Morgante; Latha Venkataraman
Low-energy electron microscopy and microprobe diffraction are used to image and characterize corrugation in SiO(2)-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short-range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load and temperature, which is manifested by variations in the diffraction line shape. The effects of both intrinsic and extrinsic corrugation factors are discussed.
ACS Nano | 2010
Joachim Reichert; Agustin Schiffrin; W. Auwärter; Alexander Weber-Bargioni; Matthias Marschall; Martina Dell'Angela; Dean Cvetko; Gregor Bavdek; Albano Cossaro; A. Morgante; Johannes V. Barth
We studied the formation of graphene nanoribbons (GNRs) via the self-assembly of 10,10′-dibromo-9,9′-bianthryl precursor molecules on gold surfaces with different synchrotron spectroscopies. Through X-ray photoemission spectroscopy core-level shifts, we followed each step of the synthetic process, and could show that the Br–C bonds of the precursors cleave at temperatures as low as 100 °C on both Au(111) and Au(110). We established that the resulting radicals bind to Au, forming Au–C and Au–Br bonds. We show that the polymerization of the precursors follows Br desorption from Au, suggesting that the presence of halogens is the limiting factor in this step. Finally, with angle-resolved ultraviolet photoemission spectroscopy and density functional theory we show that the GNR/Au interaction results in an upshift of the Shockley surface state of Au(111) by ∼0.14 eV, together with an increased electron effective mass.
Physical Review B | 2011
Kevin Knox; A. Locatelli; Mehmet Yilmaz; Dean Cvetko; Tevfik Onur Menteş; Miguel Á. Niño; Philip Kim; A. Morgante; Richard M. Osgood
Understanding the role of intermolecular interaction on through-space charge transfer characteristics in π-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond charge-transfer dynamics in cyclophanes, which consist of two precisely stacked π-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 Å, respectively. We find that charge transfer across the π-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP. These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in π-stacked systems.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
R Gotter; Alessandro Ruocco; A. Morgante; Dean Cvetko; Luca Floreano; F. Tommasini; Giovanni Stefani
We present a combined study of the adsorption and ordering of the l-tyrosine amino acid on the close-packed Ag(111) noble-metal surface in ultrahigh vacuum by means of low-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. On this substrate the biomolecules self-assemble at temperatures exceeding 320 K into linear structures primarily following specific crystallographic directions and evolve with larger molecular coverage into two-dimensional nanoribbons which are commensurate with the underlying atomic lattice. Our high resolution topographical STM data reveal noncovalent molecular dimerization within the highly ordered one-dimensional nanostructures, which recalls the geometrical pattern already seen in the l-methionine/Ag(111) system and supports a universal bonding scheme for amino acids on smooth and unreactive metal surfaces. The molecules desorb for temperatures above 350 K, indicating a relatively weak interaction between the molecules and the substrate. XPS measurements reveal a zwitterionic adsorption, whereas NEXAFS experiments show a tilted adsorption configuration of the phenol moiety. This enables the interdigitation between aromatic side chains of adjacent molecules via parallel-displaced pi-pi interactions which, together with the hydrogen-bonding capability of the hydroxyl functionality, presumably mediates the emergence of the self-assembled supramolecular nanoribbons.
Surface Science | 1993
A. Morgante; Dean Cvetko; A. Santoni; Kevin C. Prince; V.R. Dhanak; G. Comelli; M. Kiskinova
Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane, which exhibits out of plane deformation or corrugation. In this paper, a technique is described to measure the band structure of such free-standing graphene by angle-resolved photoemission. Our results show that photoelectron coherence is limited by the crystal corrugation. However, by combining surface morphology measurements of the graphene roughness with angle-resolved photoemission, energy dependent quasiparticle lifetime and bandstructure measurements can be extracted. Our measurements rely on our development of an analytical formulation for relating the crystal corrugation to the photoemission linewidth. Our ARPES measurements show that, despite significant deviation from planarity of the crystal, the electronic structure of exfoliated suspended graphene is nearly that of ideal, undoped graphene; we measure the Dirac point to be within 25 meV of