Dean E. Hammond
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dean E. Hammond.
Oncogene | 2001
Dean E. Hammond; Sylvie Urbé; George F. Vande Woude; Michael J. Clague
The ligand-dependent degradation of activated tyrosine kinase receptors provides a means by which mitogenic signalling can be attenuated. In many cell types the ligand-dependent degradation of the tyrosine kinase receptor Met is completely dependent on the activity of the 26S proteasome (Jeffers et al., 1997b). We now show that degradation also requires trafficking to late endosomal compartments and the activity of acid dependent proteases as determined by the effects of a dominant negative form of dynamin (K44A) and a vacuolar-ATPase inhibitor, concanamycin. We show that in the presence of the proteasome inhibitor lactacystin, Met fails to redistribute from the plasma membrane to intracellular compartments. This observation is most consistent with the interpretation that proteasome activity is required for Met internalization and only indirectly for its degradation.
Oncogene | 2008
Jasminka Omerovic; Dean E. Hammond; Michael J. Clague; Ian A. Prior
The ubiquitously expressed major Ras isoforms: H-, K- and N-Ras, are highly conserved, yet exhibit different biological outputs. We have compared the relative efficiencies with which epidermal or hepatocyte growth factor activates Ras isoforms and the requirement for specific isoforms in the activation of downstream pathways. We find that the relative coupling efficiencies to each Ras isoform are conserved between stimuli. Furthermore, in both cases, inhibition of receptor endocytosis led to reduced N- and H-Ras activation, but K-Ras was unaffected. Acute knockdown of each isoform with siRNA allows endogenous Ras isoform function and abundance to be probed. This revealed that there is significant variation in the contribution of individual isoforms to total Ras across a panel of cancer cell lines although typically K⩾N≫H. Intriguingly, cancer cell lines where a significant fraction of endogenous Ras is oncogenically mutated showed attenuated activation of canonical Ras effector pathways. We profiled the contribution of each Ras isoform to the total Ras pool allowing interpretation of the effect of isoform-specific knockdown on signalling outcomes. In contrast to previous studies indicating preferential coupling of isoforms to Raf and PtdIns-3-kinase pathways, we find that endogenous Ras isoforms show no specific coupling to these major Ras pathways.
Journal of Cell Biology | 2012
Ricardo Nunes Bastos; Xenia Peñate; Michelle Bates; Dean E. Hammond; Francis A. Barr
CYK4 activity as a GTPase-activating protein is required during anaphase to inhibit Rac1-dependent effector pathways associated with control of cell spreading and adhesion.
Journal of Cell Biology | 2012
Anja K. Dunsch; Dean E. Hammond; Jennifer Lloyd; Lothar Schermelleh; Ulrike Gruneberg; Francis A. Barr
The asymmetric cortical localization of dynein during spindle orientation requires dynein light chain 1 and a spindle-microtubule–associated adaptor formed by CHIA and HMMR.
Journal of Proteome Research | 2010
Dean E. Hammond; Russell Hyde; Irina Kratchmarova; Robert J. Beynon; Blagoy Blagoev; Michael J. Clague
We have used stable isotope labeling by amino acids in cell culture (SILAC), in combination with high-resolution mass spectrometry, to identify common and discrete components of the respective receptor tyrosine kinase-dependent phosphotyrosine-associated networks induced by acute stimulation of A549 lung adenocarcinoma cells with EGF or HGF. In total, we obtained quantitative information for 274 proteins, which respond to either or both stimuli by >1.5 fold changes in enrichment, following immuno-precipitation with antiphosphotyrosine antibodies. The data reveal a high degree of overlap between the respective signaling networks but also clear points of departure. A small number of HGF specific effectors were identified including myosin-X, galectin-1, ELMO2 and EphrinB1, while a larger set of EGF specific effectors (39 proteins) includes both novel (e.g., MAP4K3) and established components of receptor tyrosine kinase receptor signaling pathways. Using available protein-interaction data the identified proteins have been assembled into a highly connected network that can be visualized using the Cytoscape tool.
Current Topics in Microbiology and Immunology | 2004
Dean E. Hammond; Stephanie Carter; Michael J. Clague
The receptor for hepatocyte growth factor (HGF), Met, controls a programme of invasive growth that combines proliferation with various moto- and morphogenetic processes. This process is important for development and organ regeneration, but dysregulation in transformed tissues can contribute to cancer progression and metastasis. Acute stimulation of tissue culture cells with HGF leads to Met downregulation via degradation through an endocytic mechanism that also requires proteasome activity. Perturbation of Met trafficking on the endocytic pathway, either at the level of the internalisation step or during sorting at the early endosome, leads to altered signalling outputs. Ubiquitination of Met through the E3-ligase Cbl is required for receptor downregulation, and a mutant receptor defective in Cbl binding is able to transform cells. We discuss the hypothesis that some naturally occurring Met mutants implicated in cancer may transform cells owing to defects in their trafficking along the endosomal degradation pathway.
Journal of Cell Science | 2013
Dean E. Hammond; Kang Zeng; Antonio Espert; Ricardo Nunes Bastos; Ryan D. Baron; Ulrike Gruneberg; Francis A. Barr
Summary Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell lines reveals it is destabilized and undergoes increased proteasome-mediated turnover. Global analysis of phosphatase substrates by mass spectrometry identifies the oncogenic kinase Aurora-A as the major PP6 substrate that is dysregulated under these conditions. Accordingly, cells lacking PPP6C or carrying the PPP6C-H114Y allele have elevated Aurora-A kinase activity and display chromosome instability with associated Aurora-A-dependent micronucleation. Chromosomes mis-segregated to these micronuclei are preferentially stained by the DNA damage marker &ggr;-H2AX, suggesting that loss of PPP6C promotes both chromosome instability and DNA damage. These findings support the view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers.
Molecular & Cellular Proteomics | 2016
Craig Lawless; Stephen W. Holman; Philip Brownridge; Karin Lanthaler; Victoria M. Harman; Rachel Watkins; Dean E. Hammond; Rebecca L. Miller; Paul F. G. Sims; Chris M. Grant; Claire E. Eyers; Robert J. Beynon; Simon J. Hubbard
Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies.
Current Biology | 2009
Richard Buus; Monica Faronato; Dean E. Hammond; Sylvie Urbé; Michael J. Clague
Summary The scattering response of epithelial cells to activation of the Met receptor tyrosine kinase represents one facet of an “invasive growth” program [1, 2]. It is a complex event that incorporates loss of cell-cell adhesion, morphological changes, and cell motility. Ubiquitination is a reversible posttranslational modification that may target proteins for degradation or coordinate signal transduction pathways [3, 4]. There are ∼79 active deubiquitinating enzymes (DUBs) predicted in the human genome [5, 6]. Here, via a small interfering RNA (siRNA) library approach, we have identified 12 DUBs that are necessary for aspects of the hepatocyte growth factor (HGF)-dependent scattering response of A549 cells. Different phenotypes are evident that range from full loss of scattering, similar to receptor knockdown (e.g., USP30, USP33, USP47), to loss of cell-cell contacts even in the absence of HGF but defective motility (e.g., USP3, ATXN3L). The knockdowns do not incur defective receptor, phosphatidylinositol 3-kinase, or MAP kinase activation. Our data suggest widespread involvement of the ubiquitin system at multiple stages of the Met activation response, implying significant crosstalk with phosphorylation-based transduction pathways. Development of small-molecule inhibitors of particular DUBs may offer a therapeutic approach to contain metastasis.
BMC Biology | 2015
Steven A. Ramm; Dominic A. Edward; Amy J. Claydon; Dean E. Hammond; Philip Brownridge; Jane L. Hurst; Robert J. Beynon; Paula Stockley
BackgroundEjaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment.ResultsOur quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid – i.e. seminal fluid proteome composition – differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition – SVS 6, SVS 5 and CEACAM 10 – were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities.ConclusionsOur study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition.