Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean F. Wong is active.

Publication


Featured researches published by Dean F. Wong.


Journal of Cerebral Blood Flow and Metabolism | 2007

Consensus nomenclature for in vivo imaging of reversibly binding radioligands

Robert B. Innis; Vincent J. Cunningham; Jacques Delforge; Masahiro Fujita; Albert Gjedde; Roger N. Gunn; James E. Holden; Sylvain Houle; Sung-Cheng Huang; Masanori Ichise; Hidehiro Iida; Hiroshi Ito; Yuichi Kimura; Robert A. Koeppe; Gitte M. Knudsen; Juhani Knuuti; Adriaan A. Lammertsma; Marc Laruelle; Jean Logan; Ralph Paul Maguire; Mark A. Mintun; Evan D. Morris; Ramin V. Parsey; Julie C. Price; Mark Slifstein; Vesna Sossi; Tetsuya Suhara; John R. Votaw; Dean F. Wong; Richard E. Carson

An international group of experts in pharmacokinetic modeling recommends a consensus nomenclature to describe in vivo molecular imaging of reversibly binding radioligands.


The Journal of Nuclear Medicine | 2010

In Vivo Imaging of Amyloid Deposition in Alzheimer Disease Using the Radioligand 18F-AV-45 (Flobetapir F 18)

Dean F. Wong; Paul B. Rosenberg; Yun Zhou; Anil Kumar; Vanessa Raymont; Hayden T. Ravert; Robert F. Dannals; Ayon Nandi; James Brasic; Weiguo Ye; John Hilton; Constantine G. Lyketsos; Hank F. Kung; Abhinay D. Joshi; Daniel Skovronsky; Michael J. Pontecorvo

An 18F-labeled PET amyloid-β (Aβ) imaging agent could facilitate the clinical evaluation of late-life cognitive impairment by providing an objective measure for Alzheimer disease (AD) pathology. Here we present the results of a clinical trial with (E)-4-(2-(6-(2-(2-(2-18F-fluoroethoxy)ethoxy)ethoxy)pyridin-3-yl)vinyl)-N-methyl benzenamine (18F-AV-45 or flobetapir F 18). Methods: An open-label, multicenter brain imaging, metabolism, and safety study of 18F-AV-45 was performed on 16 patients with AD (Mini-Mental State Examination score, 19.3 ± 3.1; mean age ± SD, 75.8 ± 9.2 y) and 16 cognitively healthy controls (HCs) (Mini-Mental State Examination score, 29.8 ± 0.45; mean age ± SD, 72.5 ± 11.6 y). Dynamic PET was performed over a period of approximately 90 min after injection of the tracer (370 MBq [10 mCi]). Standardized uptake values and cortical-to-cerebellum standardized uptake value ratios (SUVRs) were calculated. A simplified reference tissue method was used to generate distribution volume ratio (DVR) parametric maps for a subset of subjects. Results: Valid PET data were available for 11 AD patients and 15 HCs. 18F-AV-45 accumulated in cortical regions expected to be high in Aβ deposition (e.g., precuneus and frontal and temporal cortices) in AD patients; minimal accumulation of the tracer was seen in cortical regions of HCs. The cortical-to-cerebellar SUVRs in AD patients showed continual substantial increases through 30 min after administration, reaching a plateau within 50 min. The 10-min period from 50 to 60 min after administration was taken as a representative sample for further analysis. The cortical average SUVR for this period was 1.67 ± 0.175 for patients with AD versus 1.25 ± 0.177 for HCs. Spatially normalized DVRs generated from PET dynamic scans were highly correlated with SUVR (r = 0.58–0.88, P < 0.005) and were significantly greater for AD patients than for HCs in cortical regions but not in subcortical white matter or cerebellar regions. No clinically significant changes in vital signs, electrocardiogram, or laboratory values were observed. Conclusion: 18F-AV-45 was well tolerated, and PET showed significant discrimination between AD patients and HCs, using either a parametric reference region method (DVR) or a simplified SUVR calculated from 10 min of scanning 50–60 min after 18F-AV-45 administration.


Archives of General Psychiatry | 2010

Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease

Madhav Thambisetty; Andrew Simmons; Latha Velayudhan; Abdul Hye; James J. Campbell; Yi Zhang; Lars Olof Wahlund; Eric Westman; Anna Kinsey; Andreas Güntert; Petroula Proitsi; John Powell; Mirsada Causevic; Richard Killick; Katie Lunnon; Steven Lynham; Martin Broadstock; Fahd Choudhry; David R. Howlett; Robert J. Williams; Sally I. Sharp; Cathy Mitchelmore; Catherine Tunnard; Rufina Leung; Catherine Foy; Darragh O'Brien; Gerome Breen; Simon J. Furney; Malcolm Ward; Iwona Kloszewska

CONTEXT Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). OBJECTIVE To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. DESIGN Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. SETTING A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. PARTICIPANTS Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. MAIN OUTCOME MEASURES Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. RESULTS Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. CONCLUSIONS These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.


Biological Psychiatry | 2006

Sex Differences in Striatal Dopamine Release in Healthy Adults

Cynthia A. Munro; Mary E. McCaul; Dean F. Wong; Lynn M. Oswald; Yun Zhou; James Brasic; Hiroto Kuwabara; Anil Kumar; Mohab Alexander; Weiguo Ye; Gary S. Wand

BACKGROUND Sex differences in addictive disorders have been described. Preclinical studies have implicated the striatal dopamine system in these differences, but human studies have yet to substantiate these findings. METHODS Using positron emission tomography (PET) scans with high-specific-activity [11C] raclopride and a reference tissue approach, we compared baseline striatal dopamine binding potential (BP) and dopamine release in men and women following amphetamine and placebo challenges. Subjective drug effects and plasma cortisol and growth hormone responses were also examined. RESULTS Although there was no sex difference in baseline BP, men had markedly greater dopamine release than women in the ventral striatum. Secondary analyses indicated that men also had greater dopamine release in three of four additional striatal regions. Paralleling the PET findings, mens ratings of the positive effects of amphetamine were greater than womens. We found no sex difference in neuroendocrine hormone responses. CONCLUSIONS We report for the first time a sex difference in dopamine release in humans. The robust dopamine release in men could account for increased vulnerability to stimulant use disorders and methamphetamine toxicity. Our findings indicate that future studies should control for sex and may have implications for the interpretation of sex differences in other illnesses involving the striatum.


Neuropsychopharmacology | 2006

Increased Occupancy of Dopamine Receptors in Human Striatum during Cue-Elicited Cocaine Craving

Dean F. Wong; Hiroto Kuwabara; David J. Schretlen; Katherine R. Bonson; Yun Zhou; Ayon Nandi; James Brasic; Alane S. Kimes; Marika Maris; Anil Kumar; Carlo Contoreggi; Jonathan M. Links; Monique Ernst; Olivier Rousset; Stephen R. Zukin; Anthony A. Grace; Charles Rohde; Donald R. Jasinski; Albert Gjedde; Edythe D. London

In all, 19 research subjects, with current histories of frequent cocaine use, were exposed to cocaine-related cues to elicit drug craving. We measured the change of occupancy of dopamine at D2-like receptors with positron emission tomography (PET) and inferred a change of intrasynaptic dopamine (endogenous dopamine release), based on the displacement of radiotracer [11C]raclopride. Receptor occupancy by dopamine increased significantly in putamen of participants who reported cue-elicited craving compared to those who did not. Further, the intensity of craving was positively correlated with the increase in dopamine receptor occupancy in the putamen. These results provide direct evidence that occupancy of dopamine receptors in human dorsal striatum increased in proportion to subjective craving, presumably because of increased release of intrasynaptic dopamine.


Neuropsychopharmacology | 2002

Dopamine D2 and D3 Receptor Occupancy in Normal Humans Treated with the Antipsychotic Drug Aripiprazole (OPC 14597): A Study Using Positron Emission Tomography and [11C]Raclopride

Fuji Yokoi; Gerhard Gründer; Kathleen Biziere; Massoud Stephane; Ahmet S Dogan; Robert F. Dannals; Hayden T. Ravert; Ajit Suri; Steven L. Bramer; Dean F. Wong

Aripiprazole (OPC 14597) is an antipsychotic drug that has high affinity for dopamine D2 and D3 receptors and the dopamine autoreceptor. It is being developed for treatment of patients with schizophrenia. The purpose of this study was to determine whether a dose response following graduated doses of aripiprazole could be quantified and correlated with its occupancy of the D2 and D3 dopamine receptors in the brain of living humans. Dopamine D2 and D3 receptor occupancy in fifteen normal male human brains was measured using positron emission tomography (PET) with [11C]raclopride. PET studies were performed before and after two weeks of administration of aripiprazole. The dopamine D2 receptor occupancy was quantified with two kinetic modeling methods without using a blood input function. Administration of aripiprazole for 14 days resulted in a dose-dependent receptor occupancy between 40 – 95% after the administration of 0.5mg, 1 mg, 2 mg, 10 mg, and 30 mg per day. These results suggest that an adequate occupancy can be obtained, and this may be useful to predict an appropriate therapeutic dose for an individual patient. Interestingly, even at striatal D2 receptor occupancy values above 90%, which occurred with the higher doses, extrapyramidal side effects (EPS) were not observed. This underlines aripiprazoles unique mechanism of action as a partial dopamine receptor agonist, which might become a novel principle in the treatment of schizophrenia.


Neuropsychopharmacology | 2005

Relationships Among Ventral Striatal Dopamine Release, Cortisol Secretion, and Subjective Responses to Amphetamine

Lynn M. Oswald; Dean F. Wong; Mary E. McCaul; Yun Zhou; Hiroto Kuwabara; Leena Choi; James Brasic; Gary S. Wand

There is evidence that stress and glucocorticoids alter drug self-administration and mesolimbic dopamine (DA) activity in preclinical models. The primary purpose of this study was to test the hypothesis that glucocorticoids are associated with psychostimulant reinforcement and DA release in humans. In total, 16 healthy adults, ages 18–27 years, underwent two consecutive 90-min PET studies with high specific activity [11C]raclopride. The first scan was preceded by intravenous saline, and the second by intravenous amphetamine (AMPH 0.3 mg/kg). DA release was defined as the percent change in raclopride binding between the placebo and AMPH scans. Measures of subjective drug effects, plasma cortisol, and growth hormone (GH) were obtained. Findings showed that cortisol levels were positively associated with AMPH-induced DA release in the left ventral striatum (LVS) and the dorsal putamen. Subjects with higher cortisol responses to AMPH also reported more positive subjective drug effects than subjects with lower cortisol responses; no association was observed between cortisol levels and negative drug effects. Higher ratings of positive drug effects were also associated with greater DA release in the LVS, dorsal putamen, and dorsal caudate. A general lack of relationship was observed between GH responses to AMPH and DA release or subjective drug responses. Our findings provide evidence of interrelationships between glucocorticoid levels, subjective responses to IV AMPH, and brain DA release in humans. The results are consistent with those of preclinical studies, suggesting that individual differences in HPA axis function may influence vulnerability to alcohol and drug dependence in humans.


JAMA Neurology | 2013

Self-Reported Sleep and β-Amyloid Deposition in Community-Dwelling Older Adults

Adam P. Spira; Alyssa A. Gamaldo; Yang An; Mark N. Wu; Eleanor M. Simonsick; Murat Bilgel; Yun Zhou; Dean F. Wong; Luigi Ferrucci; Susan M. Resnick

IMPORTANCE Older adults commonly report disturbed sleep, and recent studies in humans and animals suggest links between sleep and Alzheimer disease biomarkers. Studies are needed that evaluate whether sleep variables are associated with neuroimaging evidence of β-amyloid (Aβ) deposition. OBJECTIVE To determine the association between self-reported sleep variables and Aβ deposition in community-dwelling older adults. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 70 adults (mean age, 76 [range, 53-91] years) from the neuroimaging substudy of the Baltimore Longitudinal Study of Aging, a normative aging study. EXPOSURE Self-reported sleep variables. MAIN OUTCOMES AND MEASURES β-Amyloid burden, measured by carbon 11-labeled Pittsburgh compound B positron emission tomography distribution volume ratios (DVRs). RESULTS After adjustment for potential confounders, reports of shorter sleep duration were associated with greater Aβ burden, measured by mean cortical DVR (B = 0.08 [95% CI, 0.03-0.14]; P = .005) and precuneus DVR (B = 0.11 [0.03-0.18]; P = .007). Reports of lower sleep quality were associated with greater Aβ burden measured by precuneus DVR (B = 0.08 [0.01-0.15]; P = .03). CONCLUSIONS AND RELEVANCE Among community-dwelling older adults, reports of shorter sleep duration and poorer sleep quality are associated with greater Aβ burden. Additional studies with objective sleep measures are needed to determine whether sleep disturbance causes or accelerates Alzheimer disease.


Neuropsychopharmacology | 2008

Mechanisms of Dopaminergic and Serotonergic Neurotransmission in Tourette Syndrome: Clues from an In Vivo Neurochemistry Study with PET

Dean F. Wong; James Brasic; Harvey S. Singer; David J. Schretlen; Hiroto Kuwabara; Yun Zhou; Ayon Nandi; Marika Maris; Mohab Alexander; Weiguo Ye; Olivier Rousset; Anil Kumar; Zsolt Szabo; Albert Gjedde; Anthony A. Grace

Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by motor and phonic tics. Obsessive-compulsive disorder (OCD) is often concomitant with TS. Dysfunctional tonic and phasic dopamine (DA) and serotonin (5-HT) metabolism may play a role in the pathophysiology of TS. We simultaneously measured the density, affinity, and brain distribution of dopamine D2 receptors (D2-Rs), dopamine transporter binding potential (BP), and amphetamine-induced dopamine release (DArel) in 14 adults with TS and 10 normal adult controls. We also measured the brain distribution and BP of serotonin 5-HT2A receptors (5-HT2AR), and serotonin transporter (SERT) BP, in 11 subjects with TS and 10 normal control subjects. As compared with controls, DArel was significantly increased in the ventral striatum among subjects with TS. Adults with TS+OCD exhibited a significant D2-R increase in left ventral striatum. SERT BP in midbrain and caudate/putamen was significantly increased in adults with TS (TS+OCD and TS-OCD). In three subjects with TS+OCD, in whom D2-R, 5-HT2AR, and SERT were measured within a 12-month period, there was a weakly significant elevation of DArel and 5-HT2A BP, when compared with TS–OCD subjects and normal controls. The current study confirms, with a larger sample size and higher resolution PET scanning, our earlier report that elevated DArel is a primary defect in TS. The finding of decreased SERT BP, and the possible elevation in 5-HT2AR in individuals with TS who had increased DArel, suggest a condition of increased phasic DArel modulated by low 5-HT in concomitant OCD.


Experimental Neurology | 2006

Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates

Tomás R. Guilarte; Ming-Kai Chen; Jennifer L. McGlothan; Tatyana Verina; Dean F. Wong; Yun Zhou; Mohab Alexander; Charles Rohde; Tore Syversen; Emmanuel Decamp; Amy Jo Koser; Stephanie Fritz; Heather Gonczi; D.W. Anderson; Jay S. Schneider

We tested the hypothesis that movement abnormalities induced by chronic manganese (Mn) exposure are mediated by dysfunction of the nigrostriatal dopamine system in the non-human primate striatum. Motor function and general activity of animals was monitored in parallel with chronic exposure to Mn and Positron Emission Tomography (PET) studies of in vivo dopamine release, dopamine transporters and dopamine receptors in the striatum. Analysis of metal concentrations in whole blood and brain was obtained and post-mortem analysis of brain tissue was used to confirm the in vivo PET findings. Chronic Mn exposure resulted in subtle motor function deficits that were associated with a marked decrease of in vivo dopamine release in the absence of a change in markers of dopamine (DA) terminal integrity or dopamine receptors in the striatum. These alterations in nigrostriatal DA system function were observed at blood Mn concentrations within the upper range of environmental, medical and occupational exposures in humans. These findings show that Mn-exposed non-human primates that exhibit subtle motor function deficits have an apparently intact but dysfunctional nigrostriatal DA system and provide a novel mechanism of Mn effects on the dopaminergic system.

Collaboration


Dive into the Dean F. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Zhou

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Hiroto Kuwabara

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Albert Gjedde

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Brasic

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Susan M. Resnick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arman Rahmim

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Anil Kumar

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge