Dean Kavanagh
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dean Kavanagh.
Journal of Hepatology | 2012
Ye Htun Oo; Vanessa M. Banz; Dean Kavanagh; Evaggelia Liaskou; David R. Withers; E Humphreys; Gary M. Reynolds; Laura Lee-Turner; Neena Kalia; Stefan G. Hubscher; Paul Klenerman; Bertus Eksteen; David H. Adams
Background & Aims IL-17 secreting CD4 (Th17) and CD8 (Tc17) T cells have been implicated in immune-mediated liver diseases, but the molecular basis for their recruitment and positioning within the liver is unknown. Methods The phenotype and migratory behaviour of human liver-derived Th17 and Tc17 cells were investigated by flow cytometry and chemotaxis and flow-based adhesion assays. The recruitment of murine Th17 cells to the liver was studied in vivo using intra-vital microscopy. Results IL-17+ T cells comprised 1–3% of the T cell infiltrate in inflammatory liver diseases and included both CD4 (Th17) and CD8 (Tc17) cells. They expressed RORC and the IL-23 receptor and included subsets that secreted IL-22 and interferon-γ. Th17 and Tc17 cells expressed high levels of CXCR3 and CCR6, Tc17 cells also expressed CXCR6. Binding to human sinusoidal endothelium from flow was dependent on β1 and β2 integrins, CXCR3, and, in the case of Th17 cells, VAP-1. Th17 recruitment via sinusoids in mice with liver inflammation was reduced by treatment with antibodies against CXCR3 ligands, confirming the role of CXCR3 in Th17 recruitment in vivo. In human liver, IL-17+ cells were detected in portal infiltrates close to inflamed bile ducts expressing the CCR6 ligand CCL20. Cytokine-treated human cholangiocytes secreted CCL20 and induced CCR6-dependent migration of Th17 cells suggesting that local cholangiocyte chemokine secretion localises Th17 cells to bile ducts. Conclusions CXCR3 promotes recruitment of Th17 cells from the blood into the liver in both human and murine liver injury. Their subsequent positioning near bile ducts is dependent on cholangiocyte-secreted CCL20.
Cancer Research | 2010
Rafal Sadej; Hanna M. Romanska; Dean Kavanagh; Gouri Baldwin; Takashi Takahashi; Neena Kalia; Fedor Berditchevski
Tetraspanin CD151 is associated with laminin-binding integrins and controls tumor cell migration and invasion. By analyzing responses of breast cancer cells to various growth factors, we showed that depletion of CD151 specifically attenuates transforming growth factor beta1 (TGFbeta1)-induced scattering and proliferation of breast cancer cells in three-dimensional Matrigel. CD151-dependent cell scattering requires its association with either alpha3beta1 or alpha6 integrins, but it is independent of the recruitment of CD151 to tetraspanin-enriched microdomains. We also found that CD151 regulates the compartmentalization of TGF-beta type I receptor (TbetaRI/ALK-5) and specifically controls the TGFbeta1-induced activation of p38. In contrast, signaling leading to activation of Smad2/3, c-Akt, and Erk1/2 proteins was comparable in CD151(+) and CD151(-) cells. Attenuation of TGFbeta1-induced responses correlated with reduced retention in the lung vascular bed, inhibition of pneumocyte-induced scattering of breast cancer cells in three-dimensional Matrigel, and decrease in experimental metastasis to the lungs. These results identify CD151 as a positive regulator of TGFbeta1-initiated signaling and highlight the important role played by this tetraspanin in TGFbeta1-induced breast cancer metastasis.
Stem Cell Reviews and Reports | 2011
Dean Kavanagh; Neena Kalia
The use of stem cells is considered a promising therapy for tissue regeneration and repair, particularly for tissues injured through degeneration, ischemia and inflammation. Bone marrow (BM)-derived haematopoietic stem cells (HSCs) are rare populations of multipotent stem cells that have been identified as promising potential candidates for treating a broad range of conditions. Although research into the use of stem cells for regenerative medicine is on a steep upward slope, clinical success has not been as forthcoming. This has been primarily attributed to a lack of information on the basic biology of stem cells, which remains insufficient to justify clinical studies. In particular, while our knowledge on the molecular adhesive mechanisms and local environmental factors governing stem cell homing to BM is detailed, our understanding of the mechanisms utilized at injured sites is very limited. For instance, it is unclear whether mechanisms used at injured sites are location specific or whether this recruitment can be modulated for therapeutic purposes. In addition, it has recently been suggested that platelets may play an important role in stem cell recruitment to sites of injury. A better understanding of the mechanisms used by stem cells during tissue homing would allow us to develop strategies to improve recruitment of these rare cells. This review will focus on the status of our current understanding of stem cell homing to injured tissues, the role of platelets and directions for the future.
Cancer Immunology, Immunotherapy | 2008
Peter Hampson; Dean Kavanagh; Emily Smith; Keqing Wang; Janet M. Lord; G. Ed Rainger
The modes of action of the novel anti-skin tumor agent ingenol-3-angelate (PEP005) are incompletely understood. Crucially, the cytotoxic functions of neutrophils recruited to the tumor in response to topical application of PEP005 are necessary for effective ablation of the treated lesion. Here, we investigated the hypothesis that the phorbol ester-like properties of PEP005 and its ability to activate PKC could directly activate endothelial cells (EC) so that they support the recruitment of neutrophils. Exposure of EC to PEP005 induced mRNA and/or protein for E-selectin, ICAM-1 and IL-8 in a dose dependent manner, while in a flow based adhesion assay, PEP005 treated EC supported the recruitment of neutrophils at levels comparable to EC stimulated with TNF-α. Neutrophil adhesion was inhibited by antibody against E-selectin but not P-selectin. Activation of EC was inhibited by the PKC inhibitor bisindolylmaleimide-1 and confocal immuno-fluorescent studies demonstrated translocation of PKC-δ from the cytosol to the peri-nuclear membrane in response to PEP005. Importantly, the knock down of PKC-δ using siRNA completely abolished neutrophil recruitment to EC subsequently treated with PEP005. Thus, we describe a novel route by which the anti-tumor agent PEP005 regulates the recruitment of cytotoxic leukocytes by directly activating EC in a PKC-δ dependent manner.
Hepatology | 2012
Victoria Aldridge; Abhilok Garg; Nicholas Davies; David C. Bartlett; Janine Youster; Heather Beard; Dean Kavanagh; Neena Kalia; Jonathan Frampton; Patricia F. Lalor; Philip N. Newsome
Human bone marrow mesenchymal stem cells (hMSCs) have shown benefit in clinical trials of patients with liver disease. Efficient delivery of cells to target organs is critical to improving their effectiveness. This requires an understanding of the mechanisms governing cellular engraftment into the liver. Binding of hMSCs to normal/injured liver tissue, purified extracellular matrices, and human hepatic sinusoidal endothelial cells (HSECs) were quantified in static and flow conditions. To define the mechanisms underpinning hMSC interactions, neutralizing adhesion molecule antibodies were used. Fluorescently labelled hMSCs were infused intraportally into CCl4–injured mice with and without neutralizing antibodies. hMSCs expressed high levels of CD29/β1‐integrin and CD44. Using liver tissue binding assays, hMSC adhesion was greatest in diseased human liver versus normal liver (32.2 cells/field versus 20.5 cells/field [P = 0.048]). Neutralizing antibodies against CD29 and CD44 reduced hMSC binding to diseased liver by 34% and 35%, respectively (P = 0.05). hMSCs rolled at 528 μm/second on HSECs in flow assays. This rolling was abolished by CD29 blockade on hMSCs and vascular cell adhesion molecule‐1 (VCAM‐1) blockade on HSECs. Firm adhesion to HSECs was reduced by CD29 (55% [P = 0.002]) and CD44 (51% [P = 0.04]) blockade. Neutralizing antibodies to CD29 and CD44 reduced hepatic engraftment of hMSCs in murine liver from 4.45 cells/field to 2.88 cells/field (P = 0.025) and 2.35 cells/field (P = 0.03), respectively. hMSCs expressed modest levels of chemokine receptors including CCR4, CCR5, and CXCR3, but these made little contribution to hMSC adhesion in this setting. Conclusion: hMSCs bind preferentially to injured liver. Rolling of hMSCs is regulated by CD29/VCAM‐1, whereas CD29/CD44 interactions with VCAM‐1, fibronectin, and hyaluronan on HSECs determine firm adhesion both in vitro and in vivo as demonstrated using a murine model of liver injury. (HEPATOLOGY 2012;56:1063–1073)
Stem Cell Reviews and Reports | 2014
Dean Kavanagh; Joseph Robinson; Neena Kalia
There is significant interest in the use of mesenchymal stem cells (MSCs) as a potential therapeutic modality in disease and disorder, particularly those with an inflammation-based component such as coronary, renal and hepatic diseases. While there is no question that MSCs possess the capability to manipulate an ongoing inflammatory injury, the recruitment of these cells to injured sites is generally poor, and thus, open to manipulation. Enhancing the localised recruitment of MSCs to injured tissues may enhance the efficiency and efficacy of this mode of therapy. A number of techniques exist in the literature to improve the recruitment of MSCs to injured tissues, including the use of cytokines, chemical modifications and coating with either synthetic or biological particles. In addition to enhancing MSC recruitment, there is an increasing body of work examining techniques which may enhance the anti-inflammatory activity of these cells. This review will summarise the literature around these topics. This first section of this review summarises the current literature with regard to MSC homing and their recruitment during conditions of injury. In relation to the anti-inflammatory activity of MSCs, the role of systemic versus local activity will be discussed. The second part of the review focuses on the role of pretreatments in MSC therapy and how these may have potential for not only enhancing the recruitment of MSCs, but also their anti-inflammatory capabilities. In summary, it is clear that there is significant potential to improve the efficiency of MSC therapy and the techniques discussed in this review may be central to this in the future.
Gut | 2010
Dean Kavanagh; Luke E Durant; Heather A. Crosby; Patricia F. Lalor; Jon Frampton; David H. Adams; Neena Kalia
Objective: Evidence suggests haematopoietic stem cells (HSCs) can migrate to injured liver and influence tissue repair. However, mechanisms governing HSC recruitment to injured hepatic microcirculation are poorly understood. These were investigated in vivo following hepatic ischaemia–reperfusion (IR) injury and in vitro using flow-based adhesion assays. Design: Partial IR was induced in anaesthetised WT or PECAM-1−/− mice for 90 min. Recruitment of systemically administered HSCs was monitored and effects of function blocking antibodies against α4β1 integrin, CD18, CD44, PECAM-1 or VCAM-1 investigated. The kinetics and molecular events governing adhesion to murine cardiac endothelial cells in vitro were also determined. Effects of conditioned media from IR injured liver on HSC adhesion molecule expression was determined by FACS. Results: Administered HSCs homed predominantly to lungs rather than liver, highlighting a potential therapeutic hurdle. Hepatic HSC recruitment following IR injury was inhibited by anti-α4β1 and anti-VCAM-1 antibodies. A role for α4β1 was also confirmed using flow-based adhesion assays. Incubating HSCs with conditioned media from IR injured liver increased α4β1 expression. CD18, CD44 and PECAM-1 were not involved in recruitment. Conclusions: This novel study demonstrates that the α4β1/VCAM-1 pathway mediates HSC recruitment to injured liver. Manipulating this pathway may enhance delivery of HSCs to the liver.
Stem Cells | 2015
Dean Kavanagh; Shankar Suresh; Philip N. Newsome; Jon Frampton; Neena Kalia
Mesenchymal stem cells (MSCs) have shown therapeutic promise in many experimental and clinical models of inflammation. However, a commonly reported feature of MSC transplantation is poor homing to injured tissues. Previously, we have shown that pretreatment with cytokines/chemical factors enhances hematopoietic SC adhesion within intestinal microvasculature following ischemia‐reperfusion (IR) injury. Using intravital microscopy, the ability of similar pretreatment strategies to enhance the recruitment of murine MSCs to murine intestinal microvasculature following IR injury was investigated. Primary MSCs were isolated from bone marrow and selected on the basis of platelet‐derived growth factor receptor‐α and SC antigen‐1 positivity (PDGFRα+/Sca‐1+). MSC recruitment was similar in IR injured gut mucosa when compared with sham operated controls, with limited cell adhesion observed. MSCs appeared contorted in microvessels, suggesting physical entrapment. Although not recruited specifically by injury, MSC administration significantly reduced neutrophil recruitment and improved tissue perfusion in the severely injured jejunum. Vasculoprotective effects were not demonstrated in the lesser injured ileum. Pretreatment of MSCs with tumor necrosis factor (TNF)‐α, CXCL12, interferon (IFN)‐γ, or hydrogen peroxide did not enhance their intestinal recruitment. In fact, TNFα and IFNγ removed the previous therapeutic ability of transplanted MSCs to reduce neutrophil infiltration and improve perfusion in the jejunum. We provide direct evidence that MSCs can rapidly limit leukocyte recruitment and improve tissue perfusion following intestinal IR injury. However, this study also highlights complexities associated with strategies to improve MSC therapeutic efficacy. Future studies using cytokine/chemical pretreatments to enhance MSC recruitment/function require careful consideration and validation to ensure therapeutic function is not impeded. Stem Cells 2015;33:2785–2797
Gastroenterology | 2017
Andrew King; Diarmaid D. Houlihan; Dean Kavanagh; Debashis Haldar; Nguyet Luu; Andrew Owen; Shankar Suresh; Nwe Ni Than; Gary M. Reynolds; Jasmine Penny; Henry Sumption; Neil C. Henderson; Neena Kalia; Jon Frampton; David H. Adams; Philip N. Newsome
Background & Aims There is growing interest in the use of bone marrow cells to treat liver fibrosis, however, little is known about their antifibrotic efficacy or the identity of their effector cell(s). Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSCs) to liver fibrosis in mice. Methods Purified (c-kit+/sca1+/lin-) HSCs were infused repeatedly into mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of carbon tetrachloride (CCl4) or placement on a methionine-choline–deficient diet. Some mice were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC lines was quantified in Transwell assays. Levels of S1P in liver, bone marrow, and lymph fluid were measured using an enzyme-linked immunosorbent assay. Liver tissues were collected and analyzed by immunohistochemical quantitative polymerase chain reaction and sphingosine kinase activity assays. We performed quantitative polymerase chain reaction analyses of the expression of sphingosine kinase 1 and 2, sphingosine-1-phosphate lyase 1, and sphingosine-1-phosphate phosphatase 1 in normal human liver and cirrhotic liver from patients with alcohol-related liver disease (n = 6). Results Infusions of HSCs into mice with liver injury reduced liver scarring based on picrosirius red staining (49.7% reduction in mice given HSCs vs control mice; P < .001), and hepatic hydroxyproline content (328 mg/g in mice given HSCs vs 428 mg/g in control mice; P < .01). HSC infusion also reduced hepatic expression of α-smooth muscle actin (0.19 ± 0.007-fold compared with controls; P < .0001) and collagen type I α 1 chain (0.29 ± 0.17-fold compared with controls; P < .0001). These antifibrotic effects were maintained with infusion of lymphoid progenitors that lack myeloid potential and were associated with increased numbers of recipient neutrophils and macrophages in liver. In studies of HSC cell lines, we found HSCs to recruit monocytes, and this process to require C-C motif chemokine receptor 2. In fibrotic liver tissue from mice and patients, hepatic S1P levels increased owing to increased hepatic sphingosine kinase-1 expression, which contributed to a reduced liver:lymph S1P gradient and limited HSC egress from the liver. Mice given the S1P antagonist (FTY720) with HSCs had increased hepatic retention of HSCs (1697 ± 247 cells in mice given FTY720 vs 982 ± 110 cells in controls; P < .05), and further reductions in fibrosis. Conclusions In studies of mice with chronic liver injury, we showed the antifibrotic effects of repeated infusions of purified HSCs. We found that HSCs promote recruitment of endogenous macrophages and neutrophils. Strategies to reduce SIP signaling and increase retention of HSCs in the liver could increase their antifibrotic activities and be developed for treatment of patients with liver fibrosis.
PLOS ONE | 2013
Rebecca L. White; Gerard B. Nash; Dean Kavanagh; Caroline O. S. Savage; Neena Kalia
Introduction Renal disease affects over 500 million people worldwide and is set to increase as treatment options are predominately supportive. Evidence suggests that exogenous haematopoietic stem cells (HSCs) can be of benefit but due to the rarity and poor homing of these cells, benefits are either minor or transitory. Mechanisms governing HSC recruitment to injured renal microcirculation are poorly understood; therefore this study determined (i) the adhesion molecules responsible for HSC recruitment to the injured kidney, (ii) if cytokine HSC pre-treatment can enhance their homing and (iii) the molecular mechanisms accountable for any enhancement. Methods Adherent and free-flowing HSCs were determined in an intravital murine model of renal ischaemia-reperfusion injury. Some HSCs and animals were pre-treated prior to HSC infusion with function blocking antibodies, hyaluronidase or cytokines. Changes in surface expression and clustering of HSC adhesion molecules were determined using flow cytometry and confocal microscopy. HSC adhesion to endothelial counter-ligands (VCAM-1, hyaluronan) was determined using static adhesion assays in vitro. Results CD49d, CD44, VCAM-1 and hyaluronan governed HSC adhesion to the IR-injured kidney. Both KC and SDF-1α pre-treatment strategies significantly increased HSC adhesion within injured kidney, whilst SDF-1α also increased numbers continuing to circulate. SDF-1α and KC did not increase CD49d or CD44 expression but increased HSC adhesion to VCAM-1 and hyaluronan respectively. SDF-1α increased CD49d surface clustering, as well as HSC deformability. Conclusion Increasing HSC adhesive capacity for its endothelial counter-ligands, potentially through surface clustering, may explain their enhanced renal retention in vivo. Furthermore, increasing HSC deformability through SDF-1α treatment could explain the prolonged systemic circulation; the HSC can therefore continue to survey the damaged tissue instead of becoming entrapped within non-injured sites. Therefore manipulating these mechanisms of HSC recruitment outlined may improve the clinical outcome of cellular therapies for kidney disease.