Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean Stamos is active.

Publication


Featured researches published by Dean Stamos.


Journal of Medicinal Chemistry | 2008

Novel Dual-Targeting Benzimidazole Urea Inhibitors of DNA Gyrase and Topoisomerase IV Possessing Potent Antibacterial Activity: Intelligent Design and Evolution through the Judicious Use of Structure-Guided Design and Stucture−Activity Relationships

Paul S. Charifson; Anne-Laure Grillot; Trudy H. Grossman; Jonathan D. Parsons; Michael Badia; Steve Bellon; David D. Deininger; Joseph Drumm; Christian H. Gross; Arnaud Letiran; Yusheng Liao; Nagraj Mani; David P. Nicolau; Emanuele Perola; Steven Ronkin; Dean Shannon; Lora Swenson; Qing Tang; Pamela R. Tessier; Ski-Kai Tian; Martin Trudeau; Tiansheng Wang; Yunyi Wei; Hong Zhang; Dean Stamos

The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.


Nature | 2016

Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists.

Yi Zheng; Ling Qin; Natalia V. Ortiz Zacarías; Henk de Vries; Gye Won Han; Martin Gustavsson; Marta Dabros; Chunxia Zhao; Robert J. Cherney; Percy H. Carter; Dean Stamos; Ruben Abagyan; Vadim Cherezov; Raymond C. Stevens; Adriaan P. IJzerman; Laura H. Heitman; Andrew J. Tebben; Irina Kufareva; Tracy M. Handel

CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer. These disease associations have motivated numerous preclinical studies and clinical trials (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.


Antimicrobial Agents and Chemotherapy | 2007

Dual Targeting of GyrB and ParE by a Novel Aminobenzimidazole Class of Antibacterial Compounds

Trudy H. Grossman; Douglas J. Bartels; Steve Mullin; Christian H. Gross; Jonathan D. Parsons; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Eric R. Olson; Paul S. Charifson; Nagraj Mani

ABSTRACT A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metabolite incorporation assays, VRT-125853 inhibited both DNA and RNA synthesis but had little effect on protein synthesis. Both compounds inhibited the maintenance of negative supercoils in plasmid DNA in Escherichia coli at the MIC. Sequencing of DNA corresponding to the GyrB and ParE ATP-binding regions in VRT-125853- and VRT-752586-resistant mutants revealed that their primary target in Staphylococcus aureus and Haemophilus influenzae was GyrB, whereas in Streptococcus pneumoniae it was ParE. In Enterococcus faecalis, the primary target of VRT-125853 was ParE, whereas for VRT-752586 it was GyrB. DNA transformation experiments with H. influenzae and S. aureus proved that the mutations observed in gyrB resulted in decreased susceptibilities to both compounds. Novobiocin resistance-conferring mutations in S. aureus, H. influenzae, and S. pneumoniae were found in gyrB, and these mutants showed little or no cross-resistance to VRT-125853 or VRT-752586 and vice versa. Furthermore, gyrB and parE double mutations increased the MICs of VRT-125853 and VRT-752586 significantly, providing evidence of dual targeting. Spontaneous frequencies of resistance to VRT-752586 were below detectable levels (<5.2 × 10−10) for wild-type E. faecalis but were significantly elevated for strains containing single and double target-based mutations, demonstrating that dual targeting confers low levels of resistance emergence and the maintenance of susceptibility in vitro.


Antimicrobial Agents and Chemotherapy | 2006

In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

Nagraj Mani; Christian H. Gross; Jonathan D. Parsons; Brian Hanzelka; Ute Müh; Steve Mullin; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Paul S. Charifson; Trudy H. Grossman

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase.

Steven Ronkin; Michael C. Badia; Steve Bellon; Anne-Laure Grillot; Christian H. Gross; Trudy H. Grossman; Nagraj Mani; Jonathan D. Parsons; Dean Stamos; Martin Trudeau; Yunyi Wei; Paul S. Charifson

Bacterial DNA gyrase is an attractive target for the investigation of new antibacterial agents. Inhibitors of the GyrB subunit, which contains the ATP-binding site, are described in this communication. Novel, substituted 5-(1H-pyrazol-3-yl)thiazole compounds were identified as inhibitors of bacterial gyrase. Structure-guided optimization led to greater enzymatic potency and moderate antibacterial potency. Data are presented for the demonstration of selective enzyme inhibition of Escherichia coli GyrB over Staphylococcus aureus GyrB.


Journal of Medicinal Chemistry | 2013

Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists.

Maris Vilums; Annelien J.M. Zweemer; Zhiyi Yu; Henk de Vries; Julia M. Hillger; Hannah Wapenaar; Ilse A. E. Bollen; Farhana Barmare; Raymond S. Gross; Jeremy Clemens; Paul Krenitsky; Johannes Brussee; Dean Stamos; John Saunders; Laura H. Heitman; Adriaan P. IJzerman

Preclinical models of inflammatory diseases (e.g., neuropathic pain, rheumatoid arthritis, and multiple sclerosis) have pointed to a critical role of the chemokine receptor 2 (CCR2) and chemokine ligand 2 (CCL2). However, one of the biggest problems of high-affinity inhibitors of CCR2 is their lack of efficacy in clinical trials. We report a new approach for the design of high-affinity and long-residence-time CCR2 antagonists. We developed a new competition association assay for CCR2, which allows us to investigate the relation of the structure of the ligand and its receptor residence time [i.e., structure-kinetic relationship (SKR)] next to a traditional structure-affinity relationship (SAR). By applying combined knowledge of SAR and SKR, we were able to re-evaluate the hit-to-lead process of cyclopentylamines as CCR2 antagonists. Affinity-based optimization yielded compound 1 with good binding (Ki = 6.8 nM) but very short residence time (2.4 min). However, when the optimization was also based on residence time, the hit-to-lead process yielded compound 22a, a new high-affinity CCR2 antagonist (3.6 nM), with a residence time of 135 min.


Angewandte Chemie | 2015

Orchestrated Triple CH Activation Reactions Using Two Directing Groups: Rapid Assembly of Complex Pyrazoles

Weibo Yang; Shengqing Ye; Dewey Fanning; Timothy Coon; Yvonne Schmidt; Paul Krenitsky; Dean Stamos; Jin-Quan Yu

A sequential triple C-H activation reaction directed by a pyrazole and an amide group leads to the well-controlled construction of sterically congested dihydrobenzo[e]indazole derivatives. This cascade reaction demonstrates that the often problematic competing C-H activation pathways in the presence of multiple directing groups can be harvested by design to improve step economy in synthesis. Pyrazole as a relatively weak coordinating group is shown to direct Csp3-H activation for the first time.


Molecular Pharmacology | 2013

Multiple Binding Sites for Small-Molecule Antagonists at the CC Chemokine Receptor 2

Annelien J.M. Zweemer; Indira Nederpelt; H. Vrieling; S. Hafith; Maarten L.J. Doornbos; H. de Vries; J. Abt; Raymond S. Gross; Dean Stamos; John Saunders; Martine J. Smit; Adriaan P. IJzerman; Laura H. Heitman

The chemokine receptor CCR2 is a G protein–coupled receptor that is activated primarily by the endogenous CC chemokine ligand 2 (CCL2). Many different small-molecule antagonists have been developed to inhibit this receptor, as it is involved in a variety of diseases characterized by chronic inflammation. Unfortunately, all these antagonists lack clinical efficacy, and therefore a better understanding of their mechanism of action is warranted. In this study, we examined the pharmacological properties of small-molecule CCR2 antagonists in radioligand binding and functional assays. Six structurally different antagonists were selected for this study, all of which displaced the endogenous agonist 125I-CCL2 from CCR2 with nanomolar affinity. Two of these antagonists, INCB3344 [N-(2-(((3S,4S)-1-((1r,4S)-4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxycyclohexyl)-4-ethoxypyrrolidin-3-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide] and CCR2-RA, were radiolabeled to study the binding site in greater detail. We discovered that [3H]INCB3344 and [3H]CCR2-RA bind to distinct binding sites at CCR2, the latter being the first allosteric radioligand for CCR2. Besides the binding properties of the antagonists, we examined CCR2 inhibition in multiple functional assays, including a novel label-free whole-cell assay. INCB3344 competitively inhibited CCL2-induced G protein activation, whereas CCR2-RA showed a noncompetitive or allosteric mode of inhibition. These findings demonstrated that the CCR2 antagonists examined in this study can be classified into two groups with different binding sites and thereby different modes of inhibition. We have provided further insights in CCR2 antagonism, and these insights are important for the development of novel CCR2 inhibitors.


Chemistry: A European Journal | 2016

N-Heterocyclic Carbene Ligand-Enabled C(sp3)−H Arylation of Piperidine and Tetrahydropyran Derivatives

Shengqing Ye; Weibo Yang; Timothy Coon; Dewey Fanning; Tim Neubert; Dean Stamos; Jin-Quan Yu

Pd(II)-catalyzed C(sp(3))-H arylation of saturated heterocycles with a wide range of aryl iodides is enabled by an N-heterocyclic carbene (NHC) ligand. A C(sp(3))-H insertion step by the Pd(II)/NHC complex in the absence of ArI is demonstrated experimentally for the first time. Experimental data suggests that the previously established NHC-mediated Pd(0)/Pd(II) catalytic manifold does not operate in this reaction. This transformation provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.


Journal of Medicinal Chemistry | 2014

Identification of Novel HSP90α/β Isoform Selective Inhibitors Using Structure-Based Drug Design. Demonstration of Potential Utility in Treating CNS Disorders such as Huntington’s Disease

Justin Ernst; Timothy D. Neubert; Michael Liu; Samuel Sperry; Harmon Zuccola; Amy Turnbull; Beth A. Fleck; William Kargo; Lisa Woody; Peggy Chiang; Dao Tran; Weichao Chen; Phillip Snyder; Timothy Alcacio; Azin Nezami; James Reynolds; Khisal Alvi; Lance Goulet; Dean Stamos

A structure-based drug design strategy was used to optimize a novel benzolactam series of HSP90α/β inhibitors to achieve >1000-fold selectivity versus the HSP90 endoplasmic reticulum and mitochondrial isoforms (GRP94 and TRAP1, respectively). Selective HSP90α/β inhibitors were found to be equipotent to pan-HSP90 inhibitors in promoting the clearance of mutant huntingtin protein (mHtt) in vitro, however with less cellular toxicity. Improved tolerability profiles may enable the use of HSP90α/β selective inhibitors in treating chronic neurodegenerative indications such as Huntingtons disease (HD). A potent, selective, orally available HSP90α/β inhibitor was identified (compound 31) that crosses the blood-brain barrier. Compound 31 demonstrated proof of concept by successfully reducing brain Htt levels following oral dosing in rats.

Collaboration


Dive into the Dean Stamos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pan Li

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge