Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean W. Gaertner is active.

Publication


Featured researches published by Dean W. Gaertner.


Toxicology | 2014

Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats

Robert G. Berger; Pavine Lefèvre; Sheila R. Ernest; Michael G. Wade; Yi-Qian Ma; Dorothea F. K. Rawn; Dean W. Gaertner; Bernard Robaire; Barbara F. Hales

Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined.


Journal of Agricultural and Food Chemistry | 2009

Melamine in infant formula sold in Canada: occurrence and risk assessment.

Sheryl A. Tittlemier; Benjamin P.-Y. Lau; Cathie Ménard; Catherine Corrigan; Melissa Sparling; Dean W. Gaertner; Karen Pepper; Mark Feeley

An analytical method incorporating simple liquid extraction followed by mixed mode cation exchange/reversed phase solid phase extraction and liquid chromatography-tandem mass spectrometry was developed and validated for the analysis of melamine (MEL) in liquid and powdered infant formula. The method used two different MEL stable isotope labeled internal standards to monitor analyte recoveries and to account for matrix effects. The method is sensitive (limit of quantitation of 4 ng/g), accurate, and precise (during validation, recoveries corrected by internal recovery standard averaged between 92 and 104% for all fortification levels and matrices). The method was used to analyze 94 samples of infant formula purchased from major retailers in Ottawa, ON, Canada, to examine whether or not Canadian infants are exposed to background levels of MEL. MEL was detected in 71 of the 94 products analyzed at concentrations ranging from 4.31 to 346 ng/g (median = 16 ng/g). A comparison of estimated dietary exposures to the recently recommended World Health Organization toxicological reference value for melamine suggests that the presence of low levels of MEL in infant formula purchased in Canada does not represent a health risk.


Journal of Agricultural and Food Chemistry | 2009

Estimated dietary exposure of Canadians to perchlorate through the consumption of fruits and vegetables available in Ottawa markets.

Zhongwen Wang; Don Forsyth; Benjamin P.-Y. Lau; Luc Pelletier; Roni Bronson; Dean W. Gaertner

There has been increasing concern over the contamination of drinking water and food with perchlorate. Studies have reported perchlorate in a variety of foods, including lettuce, milk, fruits, and juices. In this study, 150 food samples were analyzed by ion chromatography tandem mass spectrometry (IC-MS/MS) to determine the concentrations of perchlorate in imported and domestic fruits and vegetables available from retail outlets in Ottawa, Canada. Perchlorate was found in most of the tested food types with concentrations appearing to vary by commodity and country of origin. Levels ranged from nondetectable to 536 microg/kg, with Guatemalan cantaloupes (156 +/- 232 microg/kg), United States spinach (133 +/- 24.9 microg/kg), Chilean green grapes (45.5 +/- 13.3 microg/kg), and United States Romaine lettuce (29.1 +/- 10.5 microg/kg) having the highest concentrations. Dietary exposure to perchlorate from analyzed fruits and vegetables was estimated to be approximately 36.6 and 41.1 ng/kg bw/day for toddlers (1-4 yrs) and children (5-11yrs), respectively.


Environmental Toxicology | 2013

Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat

Genevieve S. Bondy; David E. Lefebvre; Syed A. Aziz; Wendy Cherry; Laurie Coady; Ellen MacLellan; Cheryl Armstrong; Michael Barker; Gerard M. Cooke; Dean W. Gaertner; Doug L. Arnold; Rekha Mehta; Paul Rowsell

Brominated diphenyl ethers (BDEs) are persistent environmental contaminants found in human blood, tissues, and milk. To assess the impact of the commercial BDE mixture DE‐71 on the developing immune system in relation to hepatic and thyroid changes, adult (F0) rats were exposed to DE‐71 by gavage at doses of 0, 0.5, 5, or 25 mg/kg body weight (bw)/d for 21 weeks. F0 rats were bred and exposure continued through gestation, lactation and postweaning. F1 pups were weaned and exposed to DE‐71 by gavage from postnatal day (PND) 22 to 42. On PND 42, half of the F1 rats were assessed for toxicologic changes. The remaining F1 rats were challenged with the T‐dependent antigen keyhole limpet hemocyanin (KLH) and immune function was assessed on PND 56. Dose‐dependent increases in total BDE concentrations were detected in the liver and adipose of all F0 and F1 rats. In F0 rats, increased liver weight, hepatocellular hypertrophy, and decreased serum thyroxine (T4) were characteristic of DE‐71 exposure. In F1 rats perinatal DE‐71 exposure caused a nondose‐dependent increase in body weight and dose‐dependent increases in liver weight and hepatocellular hypertrophy. Serum T3 and T4 levels were decreased. In spleen from DE‐71 exposed rats the area occupied by B cells declined while the area occupied by T cells increased; however, cellular and humoral immune responses to KLH challenge were not altered. Thus hepatic and thyroid changes in rats exposed perinatally to DE‐71 were associated with altered splenic lymphocyte populations, an effect which has been linked to hypothyroidism.


Environmental Science & Technology | 2014

Hair as a biomarker of systemic exposure to polybrominated diphenyl ethers.

Shirley Poon; Michael G. Wade; Katarina Aleksa; Dorothea F. K. Rawn; Amanda Carnevale; Dean W. Gaertner; Amy R. Sadler; François Breton; Gideon Koren; Sheila R. Ernest; Claudia Lalancette; Bernard Robaire; Barbara F. Hales; Cynthia G. Goodyer

The efficacy of using hair as a biomarker for exposure to polybrominated diphenyl ether (PBDE) flame retardants was assessed in humans and an animal model. Paired human hair and serum samples were obtained from adult men and women (n = 50). In parallel, hair, serum, liver, and fat were collected from adult male Sprague-Dawley rats exposed to increasing doses of the PBDE mixture found in house dust for 70 days via the diet. All samples were analyzed by GC-MS for eight common PBDEs: BDE-28, -47, -99, -100, -153, -154, -183, and -209. Paired human hair and serum samples had five congeners (BDE-28, -47, -99, -100, and -154) with significant individual correlations (0.345-0.566). In rat samples, BDE-28 and BDE-183 were frequently below the level of detection. Significant correlations were observed for BDE-47, -99, -100, -153, -154, and -209 in rat hair, serum, liver, and fat across doses, with r values ranging from 0.803 to 0.988; weaker correlations were observed between hair and other tissues when data from the lowest dose group or for BDE-209 were analyzed. Thus, human and rat hair PBDE measurements correlate strongly with those in alternative matrices, validating the use of hair as a noninvasive biomarker of long-term PBDE exposure.


Science of The Total Environment | 2014

Hexabromocyclododecane concentrations in Canadian human fetal liver and placental tissues

Dorothea F. K. Rawn; Dean W. Gaertner; Dorcas Weber; Ivan Curran; Gerard M. Cooke; Cynthia G. Goodyer

Detectable concentrations of the flame retardant hexabromocyclododecane (HBCD) have been reported in human tissues worldwide, but investigations to determine fetal exposure to this brominated flame retardant are lacking. This study was undertaken to determine the concentrations of α-, β- and γ-HBCD in human tissues (fetal liver and placenta) from Canada. Tissue samples were collected over a thirteen year period following elective pregnancy terminations in Montreal, Quebec, Canada. Samples were extracted using homogenisation with solvent, cleaned up using adsorption chromatography and analysis was performed with liquid chromatography-tandem mass spectrometry. Total HBCD concentrations ranged from below the limit of detection (<LOD; <1 ng g(-1)) to 4500 ng g(-1) lipid in fetal livers and <LOD (<1 ng g(-1)) to 5600 ng g(-1) lipid in placental tissue. No clear temporal trend was established in liver samples, nor was a significant relationship observed between fetal age and ΣHBCD concentrations. Temporal differences, however, were noted in placental tissues before and after 2005. HBCD concentrations in liver:placental paired tissue samples did not show a correlation. HBCD was found in placental tissues from Canadian women and results indicate that HBCD was present, at measurable concentrations, in developing fetuses from as early as 6.5 weeks.


Endocrinology | 2014

Polybrominated Diphenyl Ether (DE-71) Interferes With Thyroid Hormone Action Independent of Effects on Circulating Levels of Thyroid Hormone in Male Rats

Ruby Bansal; Daniel Tighe; Amin Danai; Dorothea F. K. Rawn; Dean W. Gaertner; Doug L. Arnold; M.E. Gilbert; R. Thomas Zoeller

Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0-30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology.


Birth Defects Research Part B-developmental and Reproductive Toxicology | 2016

Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations

Emily W. Y. Tung; Han Yan; Pavine Lefèvre; Robert G. Berger; Dorothea F. K. Rawn; Dean W. Gaertner; Alice Kawata; Marc Rigden; Bernard Robaire; Barbara F. Hales; Michael G. Wade

Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine-disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti-androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague-Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30-45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity.


Biology of Reproduction | 2016

Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis

Pavine Lefèvre; Robert G. Berger; Sheila R. Ernest; Dean W. Gaertner; Dorothea F. K. Rawn; Michael G. Wade; Bernard Robaire; Barbara F. Hales

ABSTRACT Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis.


Food Additives & Contaminants Part B-surveillance | 2010

Baseline levels of melamine in food items sold in Canada. I. Dairy products and soy-based dairy replacement products

Sheryl A. Tittlemier; Benjamin P.-Y. Lau; Cathie Ménard; Catherine Corrigan; Melissa Sparling; Dean W. Gaertner; Xu-Liang Cao; Bob Dabeka

A variety of dairy and soy-based dairy replacement products (n = 246) purchased from Canadian retail outlets were analysed for baseline levels of melamine (MEL) using a sensitive LC–MS/MS method (method quantification limit = 4 µg/kg). MEL was infrequently detected; only 14% of the items analysed contained quantifiable levels of MEL. The concentrations observed, aside from one recalled sample of candy, ranged from 0.00435 to 0.276 mg/kg, and were at least 10 times lower than the 2.5 mg/kg interim standard for melamine in products containing milk and milk-derived ingredients established by Health Canada. The consumption of foods containing these low levels of MEL does not constitute a health risk for consumers.

Collaboration


Dive into the Dean W. Gaertner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge