Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deanna M. Thompson is active.

Publication


Featured researches published by Deanna M. Thompson.


Annals of Biomedical Engineering | 2006

Neurite Outgrowth is Directed by Schwann Cell Alignment in the Absence of Other Guidance Cues

Deanna M. Thompson; Helen M. Buettner

Schwann cells enhance axonal regeneration following nerve injury in vivo and provide a favorable substrate for neurite outgrowth in vitro. However, much remains unknown about the nature of interactions that occur between Schwann cells and growing neurites. In this paper, we describe direct evidence of the ability of Schwann cell alignment alone to direct neurite outgrowth. Previously, we reported that laminin micropatterns can be used to align Schwann cells and thus create oriented Schwann cell monolayers. In the current study, dissociated rat spinal neurons were seeded onto oriented Schwann cell monolayers, whose alignment provided the only directional cue for growing neurites, and neurite alignment with the underlying Schwann cells was analyzed. The orientation of neurite outgrowth mimicked that of the Schwann cells. Associations observed between neurites and Schwann cells suggest that Schwann cells may guide neurite outgrowth through both topographical and molecular mechanisms. This work demonstrates that Schwann cell alignment can direct neurite outgrowth in the absence of other directional cues, and provides a new method for examining neuronal–Schwann cell interactions in vitro.


Tissue Engineering | 2001

Schwann Cell Response to Micropatterned Laminin Surfaces

Deanna M. Thompson; Helen M. Buettner

In the peripheral nervous system, Schwann cells are closely associated with, and play key roles in, the development, maintenance, and regeneration of peripheral neurons. Following injury, Schwann cell orientation may also play a role in guiding regenerating axons. To aid in the investigation of these interactions between Schwann cells and growing neurites, we have developed a method of controlling Schwann cell placement and orientation in vitro by using microlithographically patterned laminin substrates, alternating 20-microm regions of laminin with bovine serum albumin (BSA) stripes. The Schwann cells predominantly attached and elongated on the laminin stripes and organized into multicellular aggregates that were oriented with the micropattern. A detailed analysis of Schwann cell aggregate orientation and shape demonstrated a strong dependence on time. At 1 h after seeding the cells, 70% of the aggregates were oriented with respect to the micropattern; 94% were oriented at 24 h. Variations in laminin concentration and seeding density were also investigated. The only significant differences in Schwann cell response occurred 1 h after seeding (the earliest time point the cultures were observed), and the main factor controlling the cellular orientation appeared to be the presence of the laminin-BSA interface. This ability to control cell orientation and placement provides a tool for future investigations of Schwann cell-neuronal interactions in vitro.


Journal of Neural Engineering | 2011

Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

Abigail N. Koppes; Angela M. Seggio; Deanna M. Thompson

Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm(-1)). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm(-1), and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm(-1) electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm(-1) dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.


Journal of Biomedical Materials Research Part A | 2011

Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments

Brenda L. Behan; Daniel G. DeWitt; Danielle R. Bogdanowicz; Abigail N. Koppes; Shyam Sundhar Bale; Deanna M. Thompson

Both spinal cord injury (SCI) and large-gap peripheral nerve defects can be debilitating affecting a patients long-term quality of life and presently, there is no suitable treatment for functional regeneration of these injured tissues. A number of works have suggested the benefits of electrical stimulation to promote both glial migration and neuronal extension. In this work, an electrically conductive hydrogel containing single-walled carbon nanotubes (SWCNT) for neural engineering applications is presented and the Schwann cell (SC) response to SWCNT is examined in both 2D and 3D microenvironments. Results from clonogenic and alamarBlue® assays in 2D indicate that SWCNT (10-50 μg mL(-1)) inhibit SC proliferation but do not affect cell viability. Following SWCNT exposure in 2D, changes in SC morphology can be observed with the nanomaterial attached to the cell membrane at concentrations as low as 10 μg mL(-1). In contrast to the results gathered in 2D, SC embedded within the 3D hydrogel loaded with 10-50 μg mL(-1) of SWCNT exhibited little or no measurable change in cell proliferation, viability, or morphology as assessed using a digestion assay, alamarBlue, and confocal microscopy. Collectively, this highlights that an electrically-conductive SWCNT collagen I-Matrigel™ biomaterial may be suitable for neural tissue engineering and is able to sustain populations of SC. Findings suggest that 2D nanoparticle toxicity assays may not be accurate predictors of the 3D response, further motivating the examination of these materials in a more physiologically relevant environment.


Annual Review of Biomedical Engineering | 2014

Electrical Stimuli in the Central Nervous System Microenvironment

Deanna M. Thompson; Abigail N. Koppes; John G. Hardy; Christine E. Schmidt

Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinsons disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue.


Tissue Engineering Part A | 2013

Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

Abigail N. Koppes; Andrea L. Nordberg; Gina M. Paolillo; Nicole M. Goodsell; Haley A. Darwish; Linxia Zhang; Deanna M. Thompson

Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.


Journal of Neural Engineering | 2010

Self-aligned Schwann cell monolayers demonstrate an inherent ability to direct neurite outgrowth

Angela M. Seggio; Arunachalam Narayanaswamy; Badrinath Roysam; Deanna M. Thompson

In vivo nerve guidance channel studies have identified Schwann cell (SC) presence as an integral factor in axonal number and extension in an injury site, and in vitro studies have provided evidence that oriented SCs can direct neurite outgrowth. However, traditional methods used to create oriented SC monolayers (e.g. micropatterns/microtopography) potentially introduce secondary guidance cues to the neurons that are difficult to de-couple. Although SCs expanded on uniform laminin-coated coverslips lack a global orientation, the monolayers contain naturally formed regions of locally oriented cells that can be used to investigate SC-mediated neurite guidance. In this work, novel image analysis techniques have been developed to quantitatively assess local neurite orientation with respect to the underlying regional orientation of the Schwann cell monolayer. Results confirm that, in the absence of any secondary guidance cues, a positive correlation exists between neurite outgrowth and regional orientation of the SC monolayer. Thus, SCs alone possess an inherent ability to direct neurite outgrowth, and expansion of the co-culture-based quantitative method described can be used to further deconstruct specific biomolecular mechanisms of neurite guidance.


Journal of Neural Engineering | 2014

Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation

Abigail N. Koppes; N W Zaccor; Christopher J. Rivet; L A Williams; J M Piselli; Ryan J. Gilbert; Deanna M. Thompson

OBJECTIVE Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. APPROACH To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. MAIN RESULTS Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. SIGNIFICANCE Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.


Acta Biomaterialia | 2016

Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels

Abigail N. Koppes; K.W. Keating; A.L. McGregor; Ryan A. Koppes; K.R. Kearns; A.M. Ziemba; C.A. McKay; Jonathan M. Zuidema; Christopher J. Rivet; Ryan J. Gilbert; Deanna M. Thompson

UNLABELLED The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: (1) nanofillers influence neurite extension and (2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10-100-μg/mL) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. STATEMENT OF SIGNIFICANCE Novel biomedical devices delivering electrical stimulation are being developed to mitigate symptoms of Parkinsons, treat drug-resistant depression, control movement or enhance verve regeneration. Carbon nanotubes and other novel materials are being explored for novel nano-neuro devices based on their unique properties. Neuronal growth on carbon nanotubes has been studied in 2D since the early 2000s demonstrating increased outgrowth, synapse formation and network activity. In this work, single-walled carbon nanotubes were selected as one possible electrically-conductive material, dispersed within a 3D hydrogel containing primary neurons; extending previous 2D work to 3D to evaluate outgrowth within nanomaterial composites with electrical stimulation. This is the first study to our knowledge that stimulates neurons in 3D composite nanomaterial-laden hydrogels. Examination of electrically conductive biomaterials may serve to promote regrowth following injury or in long term stimulation.


Biomaterials | 2015

Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte–neuron co-cultures

Jonathan M. Zuidema; Gregory Patrick Desmond; Christopher J. Rivet; Kathryn R. Kearns; Deanna M. Thompson; Ryan J. Gilbert

Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite response to cellular boundaries created following spinal cord injury and suggest its usefulness to study cellular responses to any aligned-to-unorganized cellular boundaries seen in vivo.

Collaboration


Dive into the Deanna M. Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen S. Ellison

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Angela M. Seggio

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

C.M. Dumont

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Rivet

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer Connolley

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavan M. V. Raja

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge