Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debabrata Mohapatra is active.

Publication


Featured researches published by Debabrata Mohapatra.


international symposium on low power electronics and design | 2011

IMPACT: imprecise adders for low-power approximate computing

Vaibhav Gupta; Debabrata Mohapatra; Sang Phill Park; Anand Raghunathan; Kaushik Roy

Low-power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, the final output is interpreted by human senses, which are not perfect. This fact obviates the need to produce exactly correct numerical outputs. Previous research in this context exploits error-resiliency primarily through voltage over-scaling, utilizing algorithmic and architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate this concept by proposing various imprecise or approximate Full Adder (FA) cells with reduced complexity at the transistor level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling. We design architectures for video and image compression algorithms using the proposed approximate arithmetic units, and evaluate them to demonstrate the efficacy of our approach. Post-layout simulations indicate power savings of up to 60% and area savings of up to 37% with an insignificant loss in output quality, when compared to existing implementations.


design automation conference | 2010

Scalable effort hardware design: exploiting algorithmic resilience for energy efficiency

Vinay K. Chippa; Debabrata Mohapatra; Anand Raghunathan; Kaushik Roy; Srimat T. Chakradhar

Algorithms from several interesting application domains exhibit the property of inherent resilience to “errors” from extrinsic or intrinsic sources, offering entirely new avenues for performance and power optimization by relaxing the conventional requirement of exact (numerical or Boolean) equivalence between the specification and hardware implementation. We propose scalable effort hardware design as an approach to tap the reservoir of algorithmic resilience and translate it into highly efficient hardware implementations. The basic tenet of the scalable effort design approach is to identify mechanisms at each level of design abstraction (circuit, architecture and algorithm) that can be used to vary the computational effort expended towards generation of the correct (exact) result, and expose them as control knobs in the implementation. These scaling mechanisms can be utilized to achieve improved energy efficiency while maintaining an acceptable (and often, near identical) level of quality of the overall result. A second major tenet of the scalable effort design approach is that fully exploiting the potential of algorithmic resilience requires synergistic cross-layer optimization of scaling mechanisms identified at different levels of design abstraction. We have implemented an energy-efficient SVM classification chip based on the proposed scalable effort design approach. We present results from post-layout simulations and demonstrate that scalable effort hardware can achieve large energy reductions (1.2X-2.2X with no impact on classification accuracy, and 2.2X-4.1X with modest reductions in accuracy) across various sets. Our results also establish that cross-layer optimization leads to much improved energy vs. quality tradeoffs compared to each of the individual techniques.


design, automation, and test in europe | 2011

Design of voltage-scalable meta-functions for approximate computing

Debabrata Mohapatra; Vinay K. Chippa; Anand Raghunathan; Kaushik Roy

Approximate computing techniques that exploit the inherent resilience in algorithms through mechanisms such as voltage over-scaling (VOS) have gained significant interest. In this work, we focus on meta-functions that represent computational kernels commonly found in application domains that demonstrate significant inherent resilience, namely Multimedia, Recognition and Data Mining. We propose design techniques (dynamic segmentation with multi-cycle error compensation, and delay budgeting for chained data path components) which enable the hardware implementations of these meta-functions to scale more gracefully under voltage over-scaling. The net effect of these design techniques is improved accuracy (fewer and smaller errors) under a wide range of over-scaled voltages. Results based on extensive transistor-level simulations demonstrate that the optimized meta-function implementations consume up to 30% less energy at iso-error rates, while achieving upto 27% lower error rates at iso-energy when compared to their baseline counterparts. System-level simulations for three applications, motion estimation, support vector machine based classification and k-means based clustering are also presented to demonstrate the impact of the improved meta-functions at the application level.


IEEE Transactions on Circuits and Systems for Video Technology | 2011

A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications

Ik Joon Chang; Debabrata Mohapatra; Kaushik Roy

We present a voltage-scalable and process-variation resilient, hybrid memory architecture, suitable for use in MPEG-4 video processors such that power dissipation can be traded for graceful degradation in “quality.” The key innovation in our proposed work is a hybrid memory array, which is a mixture of conventional 6T and 8T SRAM bit-cells. The fundamental premise of our approach lies in the fact that the human visual system is mostly sensitive to higher order bits of luminance pixels in video data. We implemented a preferential storage policy in which the higher order luma bits are stored in robust 8T bit-cells while the lower order bits are stored in conventional 6T bit-cells. This facilitates aggressive scaling of supply voltage in memory as the important luma bits, stored in 8T bit-cells, remain relatively unaffected by voltage scaling. The not-so-important lower order luma bits, stored in 6T bit-cells, if affected, contribute insignificantly to the overall degradation in output video quality. Simulation results show that under iso-area condition, we can obtain at least 32% power savings in the hybrid memory array compared to the conventional 6T SRAM array.


international symposium on low power electronics and design | 2007

Low-power process-variation tolerant arithmetic units using input-based elastic clocking

Debabrata Mohapatra; Georgios Karakonstantis; Kaushik Roy

In this paper we propose a design methodology for low-power, high-performance, process-variation tolerant architecture for arithmetic units. The novelty of our approach lies in the fact that possible delay failures due to process variations and/or voltage scaling are predicted in advance and addressed by employing an elastic clocking technique. The prediction mechanism exploits the dependence of delay of arithmetic units upon input data patterns and identifies specific inputs that activate the critical path. Under iso-yield conditions, the proposed design operates at a lower scaled down Vdd without any performance degradation, while it ensures a superlative yield under a design style employing nominal supply and transistor threshold voltage. Simulation results show power savings of upto 29%, energy per computation savings of upto 25.5% and yield enhancement of upto 11.1% compared to the conventional adders and multipliers implemented in the 70nm BPTM technology. We incorporated the proposed modules in the execution unit of a five stage DLX pipeline to measure performance using SPEC2000 benchmarks [9]. Maximum area and throughput penalty obtained were 10% and 3% respectively.


IEEE Transactions on Very Large Scale Integration Systems | 2010

Voltage Scalable High-Speed Robust Hybrid Arithmetic Units Using Adaptive Clocking

Swaroop Ghosh; Debabrata Mohapatra; Georgios Karakonstantis; Kaushik Roy

In this paper, we explore various arithmetic units for possible use in high-speed, high-yield ALUs operated at scaled supply voltage with adaptive clock stretching. We demonstrate that careful logic optimization of the existing arithmetic units (to create hybrid units) indeed make them further amenable to supply voltage scaling. Such hybrid units result from mixing right amount of fast arithmetic into the slower ones. Simulations on different hybrid adder and multipliers in BPTM 70 nm technology show 18%-50% improvements in power compared to standard adders with only 2%-8% increase in die-area at iso-yield. These optimized datapath units can be used to construct voltage scalable robust ALUs that can operate at high clock frequency with minimal performance degradation due to occasional clock stretching.


signal processing systems | 2009

System level DSP synthesis using voltage overscaling, unequal error protection & adaptive quality tuning

Georgios Karakonstantis; Debabrata Mohapatra; Kaushik Roy

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing “just-the-right” amount of quality and robustness. This is achieved, by taking into consideration system level interactions and ensuring that under any change of operating conditions only the “less-crucial” computations, that contribute less to block/system output quality, are affected. The design methodology applied to a DCT/IDCT system shows large power benefits (up to 69%) at reasonable image quality while tolerating errors induced by varying operating conditions (VOS, process variations, channel noise). Interestingly, the proposed IDCT scheme conceals channel noise at scaled voltages.


design automation conference | 2009

A voltage-scalable & process variation resilient hybrid SRAM architecture for MPEG-4 video processors

Ik Joon Chang; Debabrata Mohapatra; Kaushik Roy

We present a voltage-scalable and process-variation resilient memory architecture, suitable for MPEG-4 video processors such that power dissipation can be traded for graceful degradation in “quality”. The key innovation in our proposed work is a hybrid memory array, which is mixture of conventional 6T and 8T SRAM bit-cells. The fundamental premise of our approach lies in the fact that human visual system (HVS) is mostly sensitive to higher order bits of luminance pixels in video data. We implemented a preferential storage policy in which the higher order luma bits are stored in robust 8T bit-cells while the lower order bits are stored in conventional 6T bit-cells. This facilitates aggressive scaling of supply voltage in memory as the important luma bits, stored in 8T bit-cells, remain relatively unaffected by voltage scaling. The not-so-important lower order luma bits, stored in 6T bit-cells, if affected, contribute insignificantly to the overall degradation in output video quality. Simulation results show average power savings of up to 56%, in the hybrid memory array compared to the conventional 6T SRAM array implemented in 65nm CMOS. The area overhead and maximum output quality degradation (PSNR) incurred were 11.5% and 0.56 dB, respectively.


IEEE Transactions on Very Large Scale Integration Systems | 2014

Scalable Effort Hardware Design

Vinay K. Chippa; Debabrata Mohapatra; Kaushik Roy; Srimat T. Chakradhar; Anand Raghunathan

Applications from several application domains exhibit the property of inherent application resilience, offering entirely new avenues for performance and power optimization by relaxing the conventional requirement of exact (numerical or Boolean) equivalence between the specification and hardware implementation. We propose scalable effort hardware as a design approach to tap the reservoir of application resilience and translate it into highly efficient hardware implementations. The first tenet of the scalable effort design approach is to identify mechanisms at each level of design abstraction (circuit, architecture, and algorithm) that can be used to vary the computational effort expended toward generation of the correct (exact) result, and to expose these mechanisms as control knobs in the implementation. These scaling mechanisms can be utilized to achieve improved energy efficiency while maintaining an acceptable (and often, near identical) level of quality of the overall result. The second tenet of the scalable effort design approach is that fully exploiting the potential of application resilience requires synergistic cross-layer optimization of scaling mechanisms identified at different levels of design abstraction. We have implemented an energy-efficient recognition and mining (RM) processor based on the proposed scalable effort design approach. Results from the execution of support vector machine training and classification, generalized learning vector quantization training, and k-means clustering on the scalable effort RM processor show that it can achieve energy reductions of 1.2×-5× with negligible impact on output quality, and 2.2×-50× with moderate loss in output quality, across various data sets. Our results also establish that cross-layer optimization across different scaling mechanisms leads to higher energy savings (1.4×-2× on an average) for a given output quality compared with each of the individual techniques.


signal processing systems | 2012

Logic and Memory Design Based on Unequal Error Protection for Voltage-scalable, Robust and Adaptive DSP Systems

Georgios Karakonstantis; Debabrata Mohapatra; Kaushik Roy

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing “just-the-right” amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the “less- crucial” computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system–logic and memory–and spans multiple layers of design hierarchy–algorithm, architecture and circuit. The design methodology when applied to a multimedia sub-system shows large power benefits (up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.

Collaboration


Dive into the Debabrata Mohapatra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Lu

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge