Debasish Sen
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Debasish Sen.
Scientific Reports | 2016
Orly Liba; Elliott D. SoRelle; Debasish Sen; Adam de la Zerda
Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.
Nature Communications | 2017
Orly Liba; Matthew D. Lew; Elliott D. SoRelle; Rebecca Dutta; Debasish Sen; Darius M. Moshfeghi; Steven Chu; Adam de la Zerda
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner’s corpuscle in the human fingertip skin—features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show a method based purely on light manipulation that is able to entirely remove the speckle noise originating from turbid samples without any compromise in resolution. We refer to this
Journal of Biomedical Optics | 2016
Debasish Sen; Elliott D. SoRelle; Orly Liba; Roopa Dalal; Yannis M. Paulus; Tae Wan Kim; Darius M. Moshfeghi; Adam de la Zerda
Abstract. Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ∼0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.
Scientific Reports | 2017
Peng Si; Debasish Sen; Rebecca Dutta; Siavash Yousefi; Roopa Dalal; Yonatan Winetraub; Orly Liba; Adam de la Zerda
Optical Coherence Tomography (OCT) imaging of living subjects offers increased depth of penetration while maintaining high spatial resolution when compared to other optical microscopy techniques. However, since most protein biomarkers do not exhibit inherent contrast detectable by OCT, exogenous contrast agents must be employed for imaging specific cellular biomarkers of interest. While a number of OCT contrast agents have been previously studied, demonstrations of molecular targeting with such agents in live animals have been historically challenging and notably limited in success. Here we demonstrate for the first time that microbeads (µBs) can be used as contrast agents to target cellular biomarkers in lymphatic vessels and can be detected by OCT using a phase variance algorithm. This molecular OCT method enables in vivo imaging of the expression profiles of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a biomarker that plays crucial roles in inflammation and tumor metastasis. In vivo OCT imaging of LVYE-1 showed that the biomarker was significantly down-regulated during inflammation induced by acute contact hypersensitivity (CHS). Our work demonstrated a powerful molecular imaging tool that can be used for high resolution studies of lymphatic function and dynamics in models of inflammation, tumor development, and other lymphatic diseases.
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXII | 2018
Orly Liba; Matthew D. Lew; Elliott D. SoRelle; Rebecca Dutta; Debasish Sen; Darius M. Moshfeghi; Steven Chu; Adam de la Zerda
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise, known as speckle noise, which imposes significant limitations on its diagnostic capabilities. Here we show Speckle- Modulating OCT (SM-OCT), a method based purely on light manipulation, which can remove speckle noise, including noise originating from sample multiple back-scattering. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns, without compromising spatial resolution. The uncorrelated speckle patterns are created by scrambling the phase of the light with sub-resolution features using a moving ground-glass diffuser in the optical path of the sample arm. This method can be implemented in existing OCTs as a relatively low-cost add-on. SM-OCT speckle statistics follow the expected decrease in speckle contrast as the number of averaged scans increases. Within a scattering phantom, SM-OCT provides a 2.5-fold increase in effective resolution compared to conventional OCT. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner’s corpuscle in the human fingertip skin – features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. Our results indicate that SM-OCT has the potential to improve the current diagnostic and intra-operative capabilities of OCT.
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXII | 2018
Peng Si; Debasish Sen; Rebecca Dutta; Siavash Yousefi; Roopa Dalal; Yonatan Winetraub; Orly Liba; Adam de la Zerda
Optical Coherence Tomography (OCT) imaging of living subjects offers millimeters depth of penetration into tissue while maintaining high spatial resolution. However, because most molecular biomarkers do not produce inherent OCT contrast signals, exogenous contrast agents must be employed to achieve molecular imaging. Here we demonstrate that microbeads (μBs) can be used as effective contrast agents to target cellular biomarkers in lymphatic vessels and can be detected by OCT using a phase variance algorithm. We applied this technique to image the molecular dynamics of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in vivo, which showed significant down-regulation during tissue inflammation.
conference on lasers and electro optics | 2017
Orly Liba; Elliott D. SoRelle; Debasish Sen; Adam de la Zerda
We developed custom spectral detection algorithms and highly-scattering large gold nanorods for sub-nanomolar sensitivity contrast-enhanced optical coherence tomography (OCT). We used this approach for noninvasive 3D imaging of blood and lymph vessels in living mice.
Proceedings of SPIE | 2017
Elliott D. SoRelle; Orly Liba; Debasish Sen; Adam de la Zerda
Optical Coherence Tomography (OCT) is well-suited to study in vivo dynamics of blood circulation and lymphatic flow because of the technique’s combination of rapid image acquisition, micron spatial resolution, and penetration depth in turbid tissues. However, OCT has been historically constrained by a dearth of contrast agents that are readily distinguished from the strong scattering intrinsic to biological tissues. In this study, we demonstrate large gold nanorods (LGNRs) as optimized contrast agents for OCT. LGNRs produce 32-fold greater backscattering than GNRs previously tested for contrast-enhanced OCT. Furthermore, LGNRs exhibit 110-fold stronger spectral signal than conventional GNRs when coupled with custom spectral detection algorithms. This signal enhancement enables picomolar OCT detection sensitivity in vivo and single-particle detection against optically-clear backgrounds. Moreover, the ability to synthesize LGNRs with tunable spectral peaks provides a viable platform for multiplexed imaging studies. To explore the advantages of LGNRs as OCT contrast agents, we implemented them for noninvasive 3D imaging of tumor blood supply and active lymphatic drainage in mice. Spectral detection of LGNRs enabled 100% improvement in imaging depth for detecting microvasculature (vessels ∼ 20 μm in diameter) in U87MG glioblastoma xenografts in mice pinnae. We also demonstrated our approach’s ability to map the spatial dependence of lymph drainage and flow directionality within lymphatic capillaries. Using LGNRs with distinct spectra, we further identified the functional states of individual lymphatic valves in vivo. Thus, this approach provides a powerful new platform for functional imaging that may be extended for future molecular imaging studies with OCT.
Proceedings of SPIE | 2017
Orly Liba; Elliott D. SoRelle; Debasish Sen; Adam de la Zerda
In this study, we developed and applied highly-scattering large gold nanorods (LGNRs) and custom spectral detection algorithms for high sensitivity contrast-enhanced optical coherence tomography (OCT). We were able to detect LGNRs at a concentration as low as 50 pM in blood. We used this approach for noninvasive 3D imaging of blood vessels deep in solid tumors in living mice. Additionally, we demonstrated multiplexed imaging of spectrally-distinct LGNRs that enabled observations of functional drainage in lymphatic networks. This method, which we call MOZART, provides a platform for molecular imaging and characterization of tissue noninvasively at cellular resolution.
conference on lasers and electro optics | 2018
Orly Liba; Matthew D. Lew; Elliott D. SoRelle; Rebecca Dutta; Debasish Sen; Darius M. Moshfeghi; Steven Chu; Adam de la Zerda