Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debbie A. Smith is active.

Publication


Featured researches published by Debbie A. Smith.


Journal of Clinical Investigation | 2005

Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin

Leander Grode; Peter Seiler; Sven Baumann; Jürgen Hess; Volker Brinkmann; Ali Nasser Eddine; Peggy Mann; Christian Goosmann; Silke Bandermann; Debbie A. Smith; Gregory J. Bancroft; Jean-Marc Reyrat; Dick van Soolingen; Bärbel Raupach; Stefan H. E. Kaufmann

The tuberculosis vaccine Mycobacterium bovis bacille Calmette-Guérin (BCG) was equipped with the membrane-perforating listeriolysin (Hly) of Listeria monocytogenes, which was shown to improve protection against Mycobacterium tuberculosis. Following aerosol challenge, the Hly-secreting recombinant BCG (hly+ rBCG) vaccine was shown to protect significantly better against aerosol infection with M. tuberculosis than did the parental BCG strain. The isogenic, urease C-deficient hly+ rBCG (DeltaureC hly+ rBCG) vaccine, providing an intraphagosomal pH closer to the acidic pH optimum for Hly activity, exhibited still higher vaccine efficacy than parental BCG. DeltaureC hly+ rBCG also induced profound protection against a member of the M. tuberculosis Beijing/W genotype family while parental BCG failed to do so consistently. Hly not only promoted antigen translocation into the cytoplasm but also apoptosis of infected macrophages. We concluded that superior vaccine efficacy of DeltaureC hly+ rBCG as compared with parental BCG is primarily based on improved cross-priming, which causes enhanced T cell-mediated immunity.


Infection and Immunity | 2003

Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.

Tanya Parish; Debbie A. Smith; Sharon L. Kendall; Nicola Casali; Gregory J. Bancroft; Neil G. Stoker

ABSTRACT Two-component regulatory signal transduction systems are widely distributed among bacteria and enable the organisms to make coordinated changes in gene expression in response to a variety of environmental stimuli. The genome sequence of Mycobacterium tuberculosis contains 11 complete two-component systems, four isolated homologous regulators, and three isolated homologous sensors. We have constructed defined mutations in six of these genes and measured virulence in a SCID mouse model. Mice infected with four of the mutants (deletions of devR, tcrXY, trcS, and kdpDE) died more rapidly than those infected with wild-type bacteria. The other two mutants (narL and Rv3220c) showed no change compared to the wild-type H37Rv strain. The most hypervirulent mutant (devRΔ) also grew more rapidly in the acute stage of infection in immunocompetent mice and in gamma interferon-activated macrophages. These results define a novel class of genes in this pathogen whose presence slows down its multiplication in vivo or increases its susceptibility to host killing mechanisms. Thus, M. tuberculosis actively maintains a balance between its own survival and that of the host.


Infection and Immunity | 2001

Characterization of Auxotrophic Mutants of Mycobacterium tuberculosis and Their Potential as Vaccine Candidates

Debbie A. Smith; Tanya Parish; Neil G. Stoker; Gregory J. Bancroft

ABSTRACT Auxotrophic mutants of Mycobacterium tuberculosis have been proposed as new vaccine candidates. We have analyzed the virulence and vaccine potential of M. tuberculosis strains containing defined mutations in genes involved in methionine (metB), proline (proC), or tryptophan (trpD) amino acid biosynthesis. The metB mutant was a prototrophic strain, whereas the proC and trpD mutants were auxotrophic for proline and tryptophan, respectively. Following infection of murine bone marrow-derived macrophages, H37Rv and themetB mutant strain survived intracellularly for over 10 days, whereas over 90% of proC and trpDmutants were killed during this time. In SCID mice, both H37Rv and themetB mutant were highly virulent, with mouse median survival times (MST) of 28.5 and 42 days, respectively. TheproC mutant was significantly attenuated (MST, 130 days), whereas the trpD mutant was essentially avirulent in an immunocompromised host. Following infection of immunocompetent DBA mice with H37Rv, mice survived for a median of 83.5 days and themetB mutant now showed a clear reduction in virulence, with two of five infected mice surviving for 360 days. Both proCand trpD mutants were avirulent (MST of >360 days). In vaccination studies, prior infection with either theproC or trpD mutant gave protection equivalent (proC mutant) to or better (trpD mutant) than BCG against challenge with M. tuberculosis H37Rv. In summary, proC and trpD genes are essential for the virulence of M. tuberculosis, and mutants with disruptions in either of these genes show strong potential as vaccine candidates.


Molecular Microbiology | 2004

The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo

Siobhán C. Cowley; Mary Ko; Neora Pick; Rayken Chow; Katrina J. Downing; Bhavna G. Gordhan; Joanna Betts; Valerie Mizrahi; Debbie A. Smith; Richard W. Stokes; Yossef Av-Gay

Summary The function of the Mycobacterium tuberculosis eukaryotic‐like protein serine/threonine kinase PknG was investigated by gene knock‐out and by expression and biochemical analysis. The pknG gene (Rv0410c), when cloned and expressed in Escherichia coli, encodes a functional kinase. An in vitro kinase assay of the recombinant protein demonstrated that PknG can autophosphorylate its kinase domain as well as its 30 kDa C‐terminal portion, which contains a tetratricopeptide (TPR) structural signalling motif. Western analysis revealed that PknG is located in the cytosol as well as in mycobacterial membrane. The pknG gene was inactivated by allelic exchange in M. tuberculosis. The resulting mutant strain causes delayed mortality in SCID mice and displays decreased viability both in vitro and upon infection of BALB/c mice. The reduced growth of the mutant was more pronounced in the stationary phase of the mycobacterial growth cycle and when grown in nutrient‐depleted media. The PknG‐deficient mutant accumulates glutamate and glutamine. The cellular levels of these two amino acids reached approximately threefold of their parental strain levels. Higher cellular levels of the amine sugar‐containing molecules, GlcN‐Ins and mycothiol, which are derived from glutamate, were detected in the ΔpknG mutant. De novo glutamine synthesis was shown to be reduced by 50%. This is consistent with current knowledge suggesting that glutamine synthesis is regulated by glutamate and glutamine levels. These data support our hypothesis that PknG mediates the transfer of signals sensing nutritional stress in M. tuberculosis and translates them into metabolic adaptation.


Infection and Immunity | 2001

Production of Matrix Metalloproteinases in Response to Mycobacterial Infection

Marianne Quiding-Järbrink; Debbie A. Smith; Gregory J. Bancroft

ABSTRACT Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-α), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-α or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-γ), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-γ treatment increased macrophage secretion of TNF-α but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-α available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-α, IL-18, and IFN-γ. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.


Microbiology | 2002

Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence

Ruth Mcadam; Selwyn Quan; Debbie A. Smith; Stoyan Bardarov; Joanna Betts; Fiona C. Cook; Elizabeth U. Hooker; Alan Peter Lewis; Peter Woollard; Martin J. Everett; Pauline T. Lukey; Gregory J. Bancroft; William R. Jacobs; Ken Duncan

A library of Mycobacterium tuberculosis insertional mutants was generated with the transposon Tn5370. The junction sequence between the transposon and the mycobacterial chromosome was determined, revealing the positions of 1329 unique insertions, 1189 of which were located in 351 different ORFs. Transposition was not completely random and examination of the most susceptible genome regions revealed a lower-than-average G+C content ranging from 54 to 62 mol%. Mutants were obtained in all of the recognized M. tuberculosis functional protein-coding gene classes. About 30% of the disrupted ORFs had matches elsewhere in the genome that suggested redundancy of function. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated in a severe combined immune deficiency (SCID) mouse model. A range of phenotypes was observed in these mutants, the most notable being the severe attenuation in virulence of a strain disrupted in the Rv1290c gene, which encodes a protein of unknown function. The library described in this study provides a resource of defined mutant strains for use in functional analyses aimed at investigating the role of particular M. tuberculosis genes in virulence and defining their potential as targets for new anti-mycobacterial drugs or as candidates for deletion in a rationally attenuated live vaccine.


Immunology | 1997

T-CELL-INDEPENDENT GRANULOMA FORMATION IN RESPONSE TO MYCOBACTERIUM AVIUM : ROLE OF TUMOUR NECROSIS FACTOR-ALPHA AND INTERFERON-GAMMA

Debbie A. Smith; Holger Hänsch; Gregory J. Bancroft; S. Ehlers

SUMMARY We used Mycobacterium avium infection in severe combined immunodeficiency (SCID) mice to examine T‐cell‐independent mechanisms of inflammatory cell recruitment. SCID mice infected with a virulent strain of M. avium (TMC724) were able to recruit macrophages to sites of mycobacterial replication and formed organized and coherent granulomas in the absence of functional T cells. Phagocyte recruitment was almost totally ablated by neutralization of either tumour necrosis factor‐α (TNF‐α) or interferon‐γ (IFN‐γ) in vivo demonstrating that granuloma formation was dependent on the presence of these cytokines. This was concomitant with a reduction in the in situ cytokine mRNA levels otherwise induced in infected mice, for chemokines, pro‐inflammatory and regulatory cytokines, including TNF‐α, IFN‐γ, macrophage inflammatory protein‐1α, interleukin‐1β (IL‐1β) and IL‐10. Furthermore, in vivo treatment of infected mice with anti‐asialo GM‐1 antisera, which depletes natural killer (NK) cells, prevented recruitment of inflammatory cells. In vitro studies confirmed that M. avium was able to elicit IFN‐γ from SCID spleen in a dose‐dependent manner. These data show for the first time that secretion of IFN‐γ from NK cells can mediate a T‐cell‐independent pathway of granuloma formation and cellular infiltration in response to mycobacteria.


The Journal of Infectious Diseases | 2004

Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens

Prescille Brodin; Laleh Majlessi; Roland Brosch; Debbie A. Smith; Gregory J. Bancroft; Simon O. Clark; Ann Williams; Claude Leclerc; Stewart T. Cole

Mycobacterium microti, the vole bacillus, which was used as a live vaccine against tuberculosis until the 1970s, confers the same protection in humans as does Mycobacterium bovis bacille Calmette-Guerin (BCG). However, because the efficacy of the BCG vaccine varies considerably, we have tried to develop a better vaccine by reintroducing into M. microti the complete region of difference 1 (RD1), which is required for secretion of the potent T cell antigens early secreted antigen target (ESAT)-6 and culture filtrate protein (CFP)-10. The resultant recombinant strain, M. microti OV254::RD1-2F9, induced specific ESAT-6 and CFP-10 immune responses in mice with CD8(+) T lymphocytes that had strong expression of the CD44(hi) activation marker. This vaccine also displayed better efficacy against disseminated disease in the mouse and the guinea pig models of tuberculosis than was seen in animals vaccinated with M. microti alone or with BCG. The M. microti OV254::RD1-2F9 vaccine was less virulent and persistent in mice and than was BCG::RD1-2F9 may represent a safer alternative to BCG::RD1-2F9.


Molecular Microbiology | 2004

The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence

Farahnaz Movahedzadeh; Debbie A. Smith; Richard A. Norman; Premkumar Dinadayala; Judith Murray-Rust; David G. Russell; Sharon L. Kendall; Stuart C.G. Rison; Mark S. B. McAlister; Gregory J. Bancroft; Neil Q. McDonald; Mamadou Daffé; Yossef Av-Gay; Neil G. Stoker

Inositol is utilized by Mycobacterium tuberculosis in the production of its major thiol and of essential cell wall lipoglycans. We have constructed a mutant lacking the gene encoding inositol‐1‐phosphate synthase (ino1), which catalyses the first committed step in inositol synthesis. This mutant is only viable in the presence of extremely high levels of inositol. Mutant bacteria cultured in inositol‐free medium for four weeks showed a reduction in levels of mycothiol, but phosphatidylinositol mannoside, lipomannan and lipoarabinomannan levels were not altered. The ino1 mutant was attenuated in resting macrophages and in SCID mice. We used site‐directed mutagenesis to alter four putative active site residues; all four alterations resulted in a loss of activity, and we demonstrated that a D310N mutation caused loss of the active site Zn2+ ion and a conformational change in the NAD+ cofactor.


Infection and Immunity | 2002

Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis.

Gordhan Bg; Debbie A. Smith; Alderton H; McAdam Ra; Gregory J. Bancroft; Mizrahi

ABSTRACT A mutant of Mycobacterium tuberculosis defective in the metabolism of l-arginine was constructed by allelic exchange mutagenesis. The argF mutant strain required exogenous l-arginine for growth in vitro, and in the presence of 0.96 mM l-arginine, it achieved a growth rate and cell density in stationary phase comparable to those of the wild type. The mutant strain was also able to grow in the presence of high concentrations of argininosuccinate, but its auxotrophic phenotype could not be rescued by l-citrulline, suggesting that the ΔargF::hyg mutation exerted a polar effect on the downstream argG gene but not on argH. The mutant strain displayed reduced virulence in immunodeficient SCID mice and was highly attenuated in immunocompetent DBA/2 mice, suggesting that l-arginine availability is restricted in vivo.

Collaboration


Dive into the Debbie A. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil G. Stoker

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Tanya Parish

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Hänsch

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farahnaz Movahedzadeh

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tanya Parish

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge