Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debby Gawlitta is active.

Publication


Featured researches published by Debby Gawlitta.


Biomaterials | 2012

In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).

Hajar Seyednejad; Debby Gawlitta; Raoul V. Kuiper; Alain de Bruin; Cornelus F. van Nostrum; Tina Vermonden; Wouter J.A. Dhert; Wim E. Hennink

The aim of this study was to evaluate the in vivo biodegradation and biocompatibility of three-dimensional (3D) scaffolds based on a hydroxyl-functionalized polyester (poly(hydroxymethylglycolide-co-ε-caprolactone), PHMGCL), which has enhanced hydrophilicity, increased degradation rate, and improved cell-material interactions as compared to its counterpart poly(ε-caprolactone), PCL. In this study, 3D scaffolds based on this polymer (PHMGCL, HMG:CL 8:92) were prepared by means of fiber deposition (melt-plotting). The biodegradation and tissue biocompatibility of PHMGCL and PCL scaffolds after subcutaneous implantation in Balb/c mice were investigated. At 4 and 12 weeks post implantation, the scaffolds were retrieved and evaluated for extent of degradation by measuring the residual weight of the scaffolds, thermal properties (DSC), and morphology (SEM) whereas the polymer was analyzed for both its composition ((1)H NMR) and molecular weight (GPC). The scaffolds with infiltrated tissues were harvested, fixed, stained and histologically analyzed. The in vitro enzymatic degradation of these scaffolds was also investigated in lipase solutions. It was shown that PHMGCL 3D-scaffolds lost more than 60% of their weight within 3 months of implantation while PCL scaffolds showed no weight loss in this time frame. The molecular weight (M(w)) of PHMGCL decreased from 46.9 kDa before implantation to 23.2 kDa after 3 months of implantation, while the molecular weight of PCL was unchanged in this period. (1)H NMR analysis showed that the degradation of PHMGCL was characterized by a loss of HMG units. In vitro enzymatic degradation showed that PHMGCL scaffolds were degraded within 50 h, while the degradation time for PCL scaffolds of similar structure was 72 h. A normal foreign body response to both scaffold types characterized by the presence of macrophages, lymphocytes, and fibrosis was observed with a more rapid onset in PHMGCL scaffolds. The extent of tissue-scaffold interactions as well as vascularization was shown to be higher for PHMGCL scaffolds compared to PCL ones. Therefore, the fast degradable PHMGCL which showed good biocompatibility is a promising biomaterial for tissue engineering applications.


Archives of Physical Medicine and Rehabilitation | 2008

Deep tissue injury: how deep is our understanding?

A Anke Stekelenburg; Debby Gawlitta; Dan L. Bader; Cwj Cees Oomens

Deep pressure ulcers, necessarily involving deep tissue injury (DTI), arise in the muscle layers adjacent to bony prominences because of sustained loading. They represent a serious type of pressure ulcer because they start in underlying tissues and are often not visible until they reach an advanced stage, at which time treatment becomes problematic. Underlying mechanisms of DTI require further investigation if appropriate preventive measures are to be determined. The present commentary illustrates a hierarchic research approach selected to study these mechanisms. To differentiate between the individual roles of deformation and ischemia in the onset of skeletal muscle damage, 2 complementary approaches have been selected. In an in vivo animal model, the effects of ischemia combined with deformation and ischemia per se were studied. An in vitro muscle model was used to study the separate effects of deformation and several aspects of ischemia, including hypoxia, glucose depletion, and tissue acidification, in more detail. Based on the results of both models a sequence of events leading to cell necrosis is proposed. Deformation levels exceeding a threshold value can result in rapid tissue damage that may persist, whereas ischemia has a more gradual effect as a result of glucose depletion and tissue acidification.


Trends in Biotechnology | 2016

Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

Barbara J. Klotz; Debby Gawlitta; Antoine J.W.P. Rosenberg; Jos Malda; Ferry P.W. Melchels

Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.


Acta Biomaterialia | 2011

Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.

Hajar Seyednejad; Debby Gawlitta; Wouter J.A. Dhert; Cornelus F. van Nostrum; Tina Vermonden; Wim E. Hennink

At present there is a strong need for suitable scaffolds that meet the requirements for bone tissue engineering applications. The objective of this study was to investigate the suitability of porous scaffolds based on a hydroxyl functionalized polymer, poly(hydroxymethylglycolide-co-ε-caprolactone) (pHMGCL), for tissue engineering. In a recent study this polymer was shown to be a promising material for bone regeneration. The scaffolds consisting of pHMGCL or poly(ε-caprolactone) (PCL) were produced by means of a rapid prototyping technique (three-dimensional plotting) and were shown to have a high porosity and an interconnected pore structure. The thermal and mechanical properties of both scaffolds were investigated and human mesenchymal stem cells were seeded onto the scaffolds to evaluate the cell attachment properties, as well as cell viability and differentiation. It was shown that the cells filled the pores of the pHMGCL scaffold within 7 days and displayed increased metabolic activity when compared with cells cultured in PCL scaffolds. Importantly, pHMGCL scaffolds supported osteogenic differentiation. Therefore, scaffolds based on pHMGCL are promising templates for bone tissue engineering applications.


Acta Biomaterialia | 2014

Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.

Kristel W. M. Boere; Jetze Visser; Hajar Seyednejad; Sima Rahimian; Debby Gawlitta; Mies J. van Steenbergen; Wouter J.A. Dhert; Wim E. Hennink; Tina Vermonden; Jos Malda

Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the reinforcing component and the hydrogel network have poor interactions and the synergetic effect of both materials on the mechanical properties is not effective. Therefore, in the present study, a thermoplastic polymer blend of poly(hydroxymethylglycolide-co-ε-caprolactone)/poly(ε-caprolactone) (pHMGCL/PCL) was functionalized with methacrylate groups (pMHMGCL/PCL) and covalently grafted to gelatin methacrylamide (gelMA) hydrogel through photopolymerization. The grafting resulted in an at least fivefold increase in interface-binding strength between the hydrogel and the thermoplastic polymer material. GelMA constructs were reinforced with three-dimensionally printed pHMGCL/PCL and pMHMGCL/PCL scaffolds and tested in a model for a focal articular cartilage defect. In this model, covalent bonds at the interface of the two materials resulted in constructs with an improved resistance to repeated axial and rotational forces. Moreover, chondrocytes embedded within the constructs were able to form cartilage-specific matrix both in vitro and in vivo. Thus, by grafting the interface of different materials, stronger hybrid cartilage constructs can be engineered.


Biomaterials | 2015

Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles

Jetze Visser; Debby Gawlitta; K.E.M. Benders; Selynda M.H. Toma; Behdad Pouran; P. René van Weeren; Wouter J.A. Dhert; Jos Malda

The natural process of endochondral bone formation in the growing skeletal system is increasingly inspiring the field of bone tissue engineering. However, in order to create relevant-size bone grafts, a cell carrier is required that ensures a high diffusion rate and facilitates matrix formation, balanced by its degradation. Therefore, we set out to engineer endochondral bone in gelatin methacrylamide (GelMA) hydrogels with embedded multipotent stromal cells (MSCs) and cartilage-derived matrix (CDM) particles. CDM particles were found to stimulate the formation of a cartilage template by MSCs in the GelMA hydrogel in vitro. In a subcutaneous rat model, this template was subsequently remodeled into mineralized bone tissue, including bone-marrow cavities. The GelMA was almost fully degraded during this process. There was no significant difference in the degree of calcification in GelMA with or without CDM particles: 42.5 ± 2.5% vs. 39.5 ± 8.3% (mean ± standard deviation), respectively. Interestingly, in an osteochondral setting, the presence of chondrocytes in one half of the constructs fully impeded bone formation in the other half by MSCs. This work offers a new avenue for the engineering of relevant-size bone grafts, by the formation of endochondral bone within a degradable hydrogel.


American Journal of Sports Medicine | 2009

Zonal Chondrocyte Subpopulations Reacquire Zone-Specific Characteristics During In Vitro Redifferentiation

Wouter Schuurman; Debby Gawlitta; Travis J. Klein; Werner ten Hoope; Mattie H.P. van Rijen; Wouter J.A. Dhert; P. René van Weeren; Jos Malda

Background If chondrocytes from the superficial, middle, and deep zones of articular cartilage could maintain or regain their characteristic properties during in vitro culture, it would be feasible to create constructs comprising these distinctive zones. Hypothesis Zone-specific characteristics of zonal cell populations will disappear during 2-dimensional expansion but will reappear after 3-dimensional redifferentiation, independent of the culture technique used (alginate beads versus pellet culture). Study Design Controlled laboratory study. Methods Equine articular chondrocytes from the 3 zones were expanded in monolayer culture (8 donors) and subsequently redifferentiated in pellet and alginate bead cultures for up to 4 weeks. Glycosaminoglycans and DNA were quantified, along with immunohistochemical assessment of the expression of various zonal markers, including cartilage oligomeric protein (marking cells from the deeper zones) and clusterin (specifically expressed by superficial chondrocytes). Results Cell yield varied between zones, but proliferation rates did not show significant differences. Expression of all evaluated zonal markers was lost during expansion. Compared to the alginate bead cultures, pellet cultures showed a higher amount of glycosaminoglycans produced per DNA after redifferentiation. In contrast to cells in pellet cultures, cells in alginate beads regained zonal differences, as evidenced by zone-specific reappearance of cartilage oligomeric protein and clusterin, as well as significantly higher glycosaminoglycans production by cells from the deep zone compared to the superficial zone. Conclusion Chondrocytes isolated from the 3 zones of equine cartilage can restore their zone-specific matrix expression when cultured in alginate after in vitro expansion. Clinical Relevance Appreciation of the zonal differences can lead to important advances in cartilage tissue engineering. Findings support the use of hydrogels such as alginate for engineering zonal cartilage constructs.


Tissue Engineering Part A | 2008

The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model.

Debby Gawlitta; Kjm Kristel Boonen; Cwj Cees Oomens; Fpt Frank Baaijens; Cvc Carlijn Bouten

The influence of differentiation medium (DM) components on C2C12 murine myoblast differentiation has only been studied in monolayer cultures. Serum-free formulations have been applied that omit the use of sera with unknown composition. The goal of the present study was to compare the influence of serum-free media on C2C12 differentiation in 3-dimensional tissue-engineered muscle constructs. Myoblast proliferation and differentiation in media containing Ultroser G (DMU), insulin-like growth factor (IGF)-I (DMI), or both (DMUI) were compared with those induced by more-traditional media containing horse serum (HS) or horse serum and IGF-I (HSI). Effects of the applied media were assessed from gross construct morphology, total protein content, creatine kinase activity, and tissue viability. Addition of IGF-I (HSI) to the standard DM (HS) improved myoblast differentiation in muscle constructs. Even better results were obtained using DMU and DMUI culture conditions. DMI could not induce differentiation or maintain cell viability. Serum-free culture medium supplemented with DMU or DMUI accelerates and improves myoblast differentiation in engineered muscle tissue better than the gold standard HS.


Clinical Orthopaedics and Related Research | 2014

Does Implant Coating With Antibacterial-Loaded Hydrogel Reduce Bacterial Colonization and Biofilm Formation in Vitro?

Lorenzo Drago; Willemijn Boot; Kostantinos Dimas; K. N. Malizos; Gertrud Maria Hänsch; Jos Stuyck; Debby Gawlitta; Carlo Luca Romanò

BackgroundImplant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials.Questions/purposesWe asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion?MethodsWe tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs.ResultsComplete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion.ConclusionsImplant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro.Clinical Relevance A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.


Biofabrication | 2016

Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

Vivian H M Mouser; Ferry P.W. Melchels; Jetze Visser; Wouter J.A. Dhert; Debby Gawlitta; Jos Malda

Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.

Collaboration


Dive into the Debby Gawlitta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cwj Cees Oomens

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carlijn Carlijn Bouten

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cvc Carlijn Bouten

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fpt Frank Baaijens

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan L. Bader

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees W. J. Oomens

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge