Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debdas Dhabal is active.

Publication


Featured researches published by Debdas Dhabal.


Journal of Chemical Physics | 2015

Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids

Debdas Dhabal; Andrew Nguyen; Murari Singh; Prabir Khatua; Valeria Molinero; Sanjoy Bandyopadhyay; Charusita Chakravarty

Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW(23.15) or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S(trip), is also studied. S(trip) is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (T(thr)). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.


Journal of Chemical Physics | 2014

Triplet correlation functions in liquid water

Debdas Dhabal; Murari Singh; Kjartan Thor Wikfeldt; Charusita Chakravarty

Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.


Journal of Chemical Physics | 2016

Pressure-dependent morphology of trihexyl(tetradecyl)phosphonium ionic liquids: A molecular dynamics study

Shobha Sharma; Aditya Gupta; Debdas Dhabal; Hemant K. Kashyap

In the present molecular dynamics study, we investigate the effects of increasing pressure on the structural morphology of trihexyl(tetradecyl)phosphonium bromide (P666,14+/Br-) and trihexyl(tetradecyl)phosphonium dicyanamide (P666,14+/DCA-) ionic liquids (ILs). Special attention was paid to how charge and polarity orderings, which are present in the microscopic structure of these ILs at ambient conditions, respond to very high external pressure. The simulated X-ray scattering structure functions, S(q)s, of the two systems reveal that both the characteristic orderings show appreciable responsiveness towards the applied pressure change. At a given pressure, a slight difference between the polarity ordering (PO), charge ordering (CO), and adjacency correlations (AC) for both the systems points towards different microscopic structure of the two ILs due to change in anion. Beyond a certain pressure, we observe emergence of a new low-q peak in the S(q)s of both the systems. The new peak is associated with formation of crystalline order in these systems at higher pressures and the real space length-scale corresponding to the crystalline order lies in between those of polarity- and charge-ordering. Beyond the transition pressure, the crystallinity of both the systems increases with increasing pressure and the corresponding length-scale shifts towards smaller values upon increasing pressure. We also observe that the extent of the usual polarity ordering decreases upon increasing pressure for both the P666,14+/Br- and P666,14+/DCA- systems. We demonstrate that the disappearance of the usual polarity peak is due to decreased polar-polar and apolar-apolar correlations and enhanced correlations between the charged and uncharged groups of the ions. This scenario is completely reversed for the components corresponding to the crystalline order, the polar-polar and apolar-apolar correlations are enhanced and polar-apolar correlations are diminished at higher pressure. In addition, the charge ordering peak, which is not so obvious from the total S(q) but from ionic and sub-ionic partial components of it, shifts towards lower q values for P666,14+/Br-. Instead, for the P666,14+/DCA-, at the highest pressure studied the CO peak occurs at a q-value higher than that at the ambient pressure.


Journal of Chemical Physics | 2012

Structural correlations and cooperative dynamics in supercooled liquids

Murari Singh; Manish Agarwal; Debdas Dhabal; Charusita Chakravarty

The relationships between diffusivity and the excess, pair and residual multiparticle contributions to the entropy are examined for Lennard-Jones liquids and binary glassformers, in the context of approximate inverse power law mappings of simple liquids. In the dense liquid where diffusivities are controlled by collisions and cage relaxations, Rosenfeld-type excess entropy scaling of diffusivities is found to hold for both crystallizing as well as vitrifying liquids. The crucial differences between the two categories of liquids emerge only when local cooperative effects in the dynamics result in significant caging effects in the time-dependent behaviour of the single-particle mean square displacement. In the case of glassformers, onset of such local cooperativity coincides with onset of deviations from Rosenfeld-type excess entropy scaling of diffusivities and increasing spatiotemporal heterogeneity. In contrast, for two- and three-dimensional liquids with a propensity to crystallise, the onset of local cooperative dynamics is sufficient to trigger crystallization provided that the liquid is sufficiently supercooled that the free energy barrier to nucleation of the solid phase is negligible. The state points corresponding to onset of transient caging effects can be associated with typical values, within reasonable bounds, of the excess, pair, and residual multiparticle entropy as a consequence of the isomorph-invariant character of the excess entropy, diffusivity and related static and dynamic correlation functions.


Journal of Chemical Physics | 2016

Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium

Debdas Dhabal; Charusita Chakravarty; Valeria Molinero; Hemant K. Kashyap

We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfelds scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.


Journal of Chemical Physics | 2017

Structural investigation of room-temperature ionic liquids and high-temperature ionic melts using triplet correlation functions

Debdas Dhabal; Aditya Gupta; Hemant K. Kashyap

We use means of molecular dynamics simulation to understand the local structural arrangements in three trihexyltetradecylphosphonium (P6,6,6,14+) based room-temperature ionic liquids (RTILs) by using triplet correlation functions (TCFs) along with pair correlation functions (PCFs) and X-ray scattering structure functions (S(q)s). The anions in these RTILs are either spherically symmetric but with different effective sizes (bromide (Br−) and tetrafluoroborate (BF4−)) or angular such as dicyanamide (DCA−). The simulated PCFs, S(q)s, and TCFs of the three RTILs have been compared with three high-temperature ionic melts (HTIMs); NaBr, NaCl, and NaF. In general, the pair correlation function gives angle-averaged probability as a function of inter-particle distance whereas the TCFs associated with equilateral and isosceles triangle configurations can be used to delineate angle-resolved information of liquids structure within nearest solvation shells. For the three ionic liquids studied, a very careful examinati...


Journal of Chemical Physics | 2017

Molecular dynamics study of nanoscale organization and hydrogen bonding in binary mixtures of butylammonium nitrate ionic liquid and primary alcohols

Gourav Shrivastav; Aditya Gupta; Aman Rastogi; Debdas Dhabal; Hemant K. Kashyap

Molecular dynamics simulations are utilized here to explore the nanoscale morphology and the nature of hydrogen bonding in the equimolar mixtures of butylammonium nitrate protic ionic liquid with ethanol, propanol, and butanol. The X-ray scattering experimental study of Greaves et al. [Phys. Chem. Chem. Phys. 13, 13 501 (2011)] has evidenced that alkylammonium nitrate plus alcohol mixtures possess nanoscale structural order which becomes more pronounced as the chain length of the alcohol increases. Our analysis carried out using simulated total and partial X-ray scattering structure functions quantifies the basis of these observations. The partial structure functions highlight the off-phase density correlations of alcohol with both cation and anion in the low-q region. We demonstrate that the chain lengthening of alcohols offers significant variation in the structuring of the polar and apolar moieties in the mixtures. The inspection based on radial distribution functions manifests the non-linear hydrogen bonds of cations with nitrate anions as well as alcohol molecules. The alcohols hydroxyl group prefers to form linear hydrogen bonds with anions and with other alcohol molecules. Incremented chain length of alcohol improves the extent of hydrogen bonding but does not alter their geometry. Spatial distribution functions delineate similar preferences. It shows stronger directional preferences of the hydroxyl group of alcohols than cation in the vicinity of an anion. Enhanced pair correlations associated with the terminal methyl carbons suggest aggregation of butanol chains in apolar domains. Triplet correlation functions (TCFs) are also used to evaluate the orientational preferences of the present polar moieties in the mixtures. Information based on TCFs for distribution of polar head group of cations and anions unveils the dominance of equilateral configurations over the less frequent isosceles configurations in all the three mixtures.


Journal of Physics: Condensed Matter | 2012

Water and other tetrahedral liquids: order, anomalies and solvation

B. Shadrack Jabes; Divya Nayar; Debdas Dhabal; Valeria Molinero; Charusita Chakravarty


Physical Review Letters | 2014

Triplet correlations dominate the transition from simple to tetrahedral liquids.

Murari Singh; Debdas Dhabal; Andrew Nguyen; Valeria Molinero; Charusita Chakravarty


Physical Chemistry Chemical Physics | 2017

Probing the triplet correlation function in liquid water by experiments and molecular simulations

Debdas Dhabal; Kjartan Thor Wikfeldt; Lawrie B. Skinner; Charusita Chakravarty; Hemant K. Kashyap

Collaboration


Dive into the Debdas Dhabal's collaboration.

Top Co-Authors

Avatar

Charusita Chakravarty

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar

Hemant K. Kashyap

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar

Murari Singh

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditya Gupta

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aman Rastogi

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar

B. Shadrack Jabes

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar

Bijai Prasad

Oil and Natural Gas Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge