Debdutta Bandyopadhyay
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Debdutta Bandyopadhyay.
Journal of Biological Chemistry | 1997
Debdutta Bandyopadhyay; Anasua B. Kusari; Kathleen A. Kenner; Feng Liu; Jonathan Chernoff; Thomas A. Gustafson; Jyotirmoy Kusari
In response to insulin, protein-tyrosine phosphatase 1B (PTPase 1B) dephosphorylates 95- and 160-180-kDa tyrosine phosphorylated (PY) proteins (Kenner, K. A., Anyanwu, E., Olefsky, J. M., and Kusari, J. (1996) J. Biol. Chem. 271, 19810-19816). To characterize these proteins, lysates from control and insulin-treated cells expressing catalytically inactive PTPase 1B (CS) were immunoadsorbed and subsequently immunoblotted using various combinations of phosphotyrosine, PTPase 1B, and insulin receptor (IR) antibodies. Anti-PTPase 1B antibodies coprecipitated a 95-kDa PY protein from insulin-stimulated cells, subsequently identified as the IR β-subunit. Similarly, anti-IR antibodies coprecipitated the 50-kDa PY-PTPase 1B protein from insulin-treated cells. To identify PTPase 1B tyrosine (Tyr) residues that are phosphorylated in response to insulin, three candidate sites (Tyr66, Tyr152, and Tyr153) were replaced with phenylalanine. Replacing Tyr66 or Tyr152 and Tyr153 significantly reduced insulin-stimulated PTPase 1B phosphotyrosine content, as well as its association with the IR. Studies using mutant IRs demonstrated that IR autophosphorylation is necessary for the PTPase 1B-IR interaction. These results suggest that PTPase 1B complexes with the autophosphorylated insulin receptor in intact cells, either directly or within a complex involving additional proteins. The interaction requires multiple tyrosine phosphorylation sites within both the receptor and PTPase 1B.
Journal of Biological Chemistry | 1998
Debdutta Bandyopadhyay; Mahitosh Mandal; Liana Adam; John Mendelsohn; Rakesh Kumar
Binding of extracellular ligands to epidermal growth factor receptors (EGFR) activate signal transduction pathways associated with cell proliferation, and these events are inhibited by monoclonal antibodies against EGFR. Since efficient DNA repair in actively growing cells may require growth factor signaling, it was of interest to explore any linkage between EGFR-mediated signaling and DNA-dependent protein kinase (DNA-PK), an enzyme believed to be involved in repairing double strand breaks and V(D)J recombination. We report that anti-EGFR monoclonal antibodies (mAbs), and not EGFR ligands, trigger a specific early physical interaction between EGFR and a 350-kDa catalytic subunit of DNA or its regulatory heterodimeric complex Ku70/80, in a variety of cell types, both in vivo and in vitro. Inhibition of EGFR signaling by anti-EGFR mAb was accompanied by a reduction in the levels of the DNA-PK and its activity in the nuclear fraction. Confocal imaging revealed that a substantial amount of DNA-PK was co-localized with EGFR in anti-EGFR mAb-treated cells. Anti-EGFR mAb-induced physical interaction between EGFR and DNA-PK or Ku70/80 was dependent on the presence of EGFR, but not on the levels of EGFR. The EGFR associated with DNA-PK or Ku70/80 retains its intrinsic kinase activity. Our findings demonstrate the existence of a novel cellular pathway in mammalian cells that involves physical interactions between EGFR and DNA-PK or Ku70/80 in response to inhibition of EGFR signaling. Our present observations suggest a possible role of EGFR signaling in maintenance of the nuclear levels of DNA-PK, and interference in EGFR signaling may possibly result in the impairment of DNA repair activity in the nuclei in anti-EGFR mAb-treated cells.
Endocrinology | 1998
Meei-Huey Jeng; Margaret A. Shupnik; Timothy P. Bender; Eric H. Westin; Debdutta Bandyopadhyay; Rakesh Kumar; Shigeru Masamura; Richard J. Santen
Hormone-dependent breast cancer responds to primary therapies that block estrogen production or action, but tumor regrowth often occurs 12–18 months later. Additional hormonal treatments that further reduce estrogen synthesis or more effectively block its action cause additional remissions, but the mechanisms responsible for these secondary responses are not well understood. As a working hypothesis, we postulated that primary hormonal therapy induces adaptive changes, resulting in enhanced estrogen receptor (ER) expression and target gene activation and, further, that secondary treatment modalities interfere with these receptor-mediated transcriptional pathways. To test this hypothesis, we used an MCF-7 breast cancer model system involving deprivation of estradiol in culture for a prolonged period. These long-term estradiol-deprived (LTED) cells adapt by acquiring the ability to regrow in the absence of added estradiol. The experimental paradigm involved the comparison of wild-type cells with LTED cells. ...
Cancer Research | 2004
Debdutta Bandyopadhyay; Anupam Mishra; Estela E. Medrano
Melanoma cells typically express wild-type p53, yet they are notoriously resistant to DNA-damaging agents. Here, we show that sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, induced apoptosis in human melanoma cells in a dose- and time-dependent manner. Apoptosis was associated with HDAC1-dependent induction of Bax and acetylation of p53. Down-regulation of HDAC1 by an antisense vector sensitized the cells to NaB-induced apoptosis, whereas its overexpression conferred resistance to this agent. Increased HDAC1 levels and activity impaired NaB-mediated activation of Bax promoter and Bax protein levels. Finally, using p53-null melanoma cell line and RNA interference in cells expressing wild-type p53 protein, we show that Bax induction and NaB-mediated apoptosis is p53 dependent.
Oncogene | 1998
Mahitosh Mandal; Debdutta Bandyopadhyay; Thea M Goepfert; Rakesh Kumar
To understand the mechanism of interferon (IFN)-mediated suppression of cell cycle progression, we have earlier shown that IFN-α enhances the expression of underphosphorylated retinoblastoma protein by inhibiting the cyclin-dependent kinase-2 (CDK-2) activity (Kumar and Atlas, Proc. Natl. Acad. Sci. 89, 6599 – 6603, 1992; Zhang and Kumar, Biochem. Biophysi. Res. Comm., 200, 522 – 528, 1994). In the studies presented here, we investigated the mechanism of inhibition of CDKs in IFN-treated cells by delineating the potential role(s) of CDK-inhibitors (CKIs) and CDK-activating kinase (CAK). We report that IFN-α inhibits the H-1 kinase activity associated with CDK-4 or CDK-2 due to induction of expression of CDK-inhibitor p21WAF1 (but not p27Kip1) as its immunodepletion from IFN-treated extracts restored the CDK-associated H-1 kinase activity. In addition, we also show that IFN-γ induces expression of CDK-inhibitors p21WAF1 and p27Kip1 and inhibited the H-1 kinase activity associated with CDK-2 or CDK-4. The observed IFN-γ-mediated inhibition of CDK-2 and CDK-4 kinase activity was due to enhanced interactions with p21WAF1 and p27Kip1, respectively. We also demonstrated that IFN-induced CKIs prevent CAK from activating the CDK-2 as immunodepletion of induced CKIs from the inhibitory extracts resulted in the restoration of CAK-mediated activation of CDK-2.
Experimental Gerontology | 2003
Debdutta Bandyopadhyay; Estela E. Medrano
Genome modifications resulting from epigenetic changes appear to play a critical role in the development and/or progression of cancer. Scatter experimental evidence suggests that epigenetic changes could also be critical determinants of cellular senescence and organismal aging. Here we review the current evidence and discuss how imbalances in chromatin remodelers might trigger irreversible growth arrest in proliferating cells and tissues. Experimental data using drugs that target specific chromatin remodeling enzymes suggest that such approach could lead to the development of novel therapeutic modalities for the prevention or amelioration of some age-related dysfunctions.
Aging Cell | 2007
Debdutta Bandyopadhyay; Jonathan L. Curry; Qiushi Lin; Hunter W. Richards; Dahu Chen; Peter J. Hornsby; Nikolai A. Timchenko; Estela E. Medrano
The retinoblastoma (RB)/p16INK4a pathway regulates senescence of human melanocytes in culture and oncogene‐induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16INK4a‐positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline‐based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega‐complexes, formation of heterochromatin protein 1β (HP1β)/SUV39H1 foci, methylation of H3‐K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent‐associated β‐galactosidase marker. Notably, formation of RB/HP1β foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1β/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events.
Journal of Laboratory and Clinical Medicine | 1999
Anthony T.W. Cheung; Jyotirmoy Kusari; David Jansen; Debdutta Bandyopadhyay; Anasua B. Kusari
Protein tyrosine phosphatases (PTPs) are required for the dephosphorylation of the insulin receptor (IR) and its initial cellular substrates, and it has recently been reported that PTP-1B may play a role in the pathogenesis of insulin resistance in obesity and type 2 diabetes mellitus (DM). We therefore determined the amount and activity of PTP-1B in abdominal adipose tissue obtained from lean nondiabetic subjects (lean control (LC)), obese nondiabetic subjects (obese control (OC)), and subjects with both type 2 DM (DM2) and obesity (obese diabetic (OD)). PTP-1B protein levels were 3-fold higher in OC than in LC (1444 +/- 195 U vs 500 +/- 146 U (mean +/- SEM), P < .015), while OD exhibited a 5.5-fold increase (2728 +/- 286 U, P < .01). PTP activity was assayed by measuring the dephosphorylating activity toward a phosphorus 32-labeled synthetic dodecapeptide. In contrast to the increased PTP-1B protein levels, PTP-1B activity per unit of PTP-1B protein was markedly reduced, by 71% and 88% in OC and OD, respectively. Non-PTP-1B tyrosine phosphatase activity was comparable in all three groups. Similar results were obtained when PTP-1B activity was measured against intact human IR. A significant correlation was found between body mass index (BMI) and PTP-1B level (r = 0.672, P < .02), whereas BMI and PTP-1B activity per unit of PTP-1B showed a strong inverse correlation (r = -0.801, P < .002). These data suggest that the insulin resistance of obesity and DM2 is characterized by the increased expression of a catalytically impaired PTP-1B in adipose tissue and that impaired PTP-1B activity may be pathogenic for insulin resistance in these conditions.
Experimental Gerontology | 2001
Debdutta Bandyopadhyay; Nikolai A. Timchenko; Tetsuya Suwa; Peter J. Hornsby; Judith Campisi; Estela E. Medrano
The melanocyte is a neural crest-derived cell that localizes in humans to several organs including the epidermis, eye, inner ear and leptomeninges. In the skin, melanocytes synthesize and transfer melanin pigments to surrounding keratinocytes, leading to skin pigmentation and protection against solar exposure. We have investigated the process of replicative senescence and accompanying irreversible cell cycle arrest, in melanocytes in culture. As was found in other cell types, progressive telomere shortening appears to trigger replicative senescence in normal melanocytes. In addition, senescence is associated with increased binding of the cyclin-dependent kinase inhibitor (CDK-I) p16(INK4a) to CDK4, down-regulation of cyclin E protein levels (and consequent loss of cyclin E/CDK2 activity), underphosphorylation of the retinoblastoma protein RB and subsequent increased levels of E2F4-RB repressive complexes. In contrast to fibroblasts, however, the CDK-Is p21(Waf-1) and p27(Kip-1) are also down-regulated. These changes appear to be important for replicative senescence because they do not occur in melanocytes that overexpress the catalytic subunit of the enzyme telomerase (hTERT), or in melanomas, which are tumors that originate from melanocytes or melanoblasts. In contrast to unmodified melanocytes, hTERT overexpressing (telomerized) melanocytes displayed telomerase activity, stable telomere lengths and an extended replicative life span. However, telomerized melanocytes show changes in cell cycle regulatory proteins, including increased levels of cyclin E, p21(Waf-1) and p27(Kip-1). Cyclin E, p21(Waf-1) and p27(Kip-1) are also elevated in many primary melanomas, whereas p16(INK4a) is mutated or deleted in many invasive and metastatic melanomas. Thus, the molecular mechanisms leading to melanocyte senescence and transformation differ significantly from fibroblasts. This suggests that different cell types may use different strategies to halt the cell cycle in response to telomere attrition and thus prevent replicative immortality.
Annals of the New York Academy of Sciences | 2006
Debdutta Bandyopadhyay; Estela E. Medrano
Abstract: Cellular and molecular evidence suggests that senescence is a powerful tumor‐suppressor mechanism that prevents most higher eukaryotic cells from dividing indefinitely in vivo. Recent work has demonstrated that α‐mel‐anocyte stimulating hormone (α‐MSH) or cholera toxin (CT) can activate a cAMP pathway that elicits proliferative arrest and senescence in normal human pigmented melanocytes. In these cells, senescence is associated with increased binding of p16INK4a to CDK4 and loss of E2F‐binding activity. Because senescence may provide defense against malignant transformation of melanocytes, and because pigmentation is a strong defense against melanoma, we examined the ability of melanocytes derived from light and dark skin to respond to CT. Here we demonstrate that in melanocytes derived from dark‐skinned individuals, CT‐induced melanogenesis is associated with accumulation of the tumor suppressor p16INK4a, underphosphorylated retinoblastoma protein (pRb), downregulation of cyclin E, decreased expression of E2F1, and loss of E2F‐regulated S‐phase gene expression. In contrast to other senescent cell types, melanocytes have reduced or absent levels of the cyclin‐dependent kinase inhibitors p27Kip1 and p21Waf‐1. Importantly, melanocytes derived from light‐skinned individuals accumulated smaller amounts of melanin than did those from dark‐skinned individuals under the same conditions, and they continued to proliferate for several more division cycles. This delayed senescence may result from reduced association of p16 with CDK4, reduced levels of underphos‐phorylated pRb, and steady levels of cyclin E and E2F1. Because cyclin E‐CDK2 inhibition is required for p16‐mediated growth suppression, 1 upregulation of p16 and downregulation of cyclin E appear essential for maintenance of terminal growth and senescence. Given the rising incidence of melanoma, identification of major growth regulatory proteins involved in senescence should shed light on the biology of this genetically mysterious tumor.