Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debebe Gebremedhin is active.

Publication


Featured researches published by Debebe Gebremedhin.


Circulation Research | 1996

Identification of Epoxyeicosatrienoic Acids as Endothelium-Derived Hyperpolarizing Factors

William B. Campbell; Debebe Gebremedhin; Phillip F. Pratt; David R. Harder

Endothelial cells release several compounds, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF), that mediate the vascular effects of vasoactive hormones. The identity of EDHF remains unknown. Since arachidonic acid causes endothelium-dependent relaxations of coronary arteries through its metabolism to epoxyeicosatrienoic acids (EETs) by cytochrome P450, we wondered if the EETs represent EDHFs. Precontracted bovine coronary arteries relaxed in an endothelium-dependent manner to methacholine. The cytochrome P450 inhibitors, SKF 525A and miconazole, significantly attenuated these relaxations. They were also inhibited by tetraethylammonium (TEA),an inhibitor of Ca2+-activated K+ channels, and by high [K+]0 (20 mmol/L). Methacholine also caused hyperpolarization of coronary smooth muscle (-27 +/- 3.9 versus -40 +/- 5.1 mV), which was completely blocked by SKF 525A and miconazole. In vessels prelabeled with [3H] arachidonic acid, methacholine stimulated the release of 6-ketoprostaglandin F1alpha, 12-HETE, and the EETs. Arachidonic acid relaxed precontracted coronary arteries, which were also blocked by TEA, charybdotoxin, another Ca2+-activated K+ channel inhibitor, and high [K+]0. 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET relaxed precontracted coronary vessels (EC50, 1 X 10(-6) mol/L). The four regioisomers were equally active. TEA, charybdotoxin, and high [K+]0 attenuated the EET relaxations. 11,12-EET hyperpolarized coronary smooth muscle cells from -37 +/- 0.2 to -59 +/- 0.3 mV. In the cell-attached mode of patch clamp, both 14,15-EET and 11,12-EET increased the open-state probability of a Ca2+-activated K+ channel in coronary smooth muscle cells. This effect was blocked by TEA and charybdotoxin. These data support the hypothesis that the EETs are EDHFs.


Circulation Research | 2000

Production of 20-HETE and Its Role in Autoregulation of Cerebral Blood Flow

Debebe Gebremedhin; Andrew R. Lange; T. F. Lowry; M. Reza Taheri; Eric K. Birks; Antal G. Hudetz; Jayashree Narayanan; John R. Falck; Hirotsugu Okamoto; Richard J. Roman; Kasem Nithipatikom; William B. Campbell; David R. Harder

In the brain, pressure-induced myogenic constriction of cerebral arteriolar muscle contributes to autoregulation of cerebral blood flow (CBF). This study examined the role of 20-HETE in autoregulation of CBF in anesthetized rats. The expression of P-450 4A protein and mRNA was localized in isolated cerebral arteriolar muscle of rat by immunocytochemistry and in situ hybridization. The results of reverse transcriptase-polymerase chain reaction studies revealed that rat cerebral microvessels express cytochrome P-450 4A1, 4A2, 4A3, and 4A8 isoforms, some of which catalyze the formation of 20-HETE from arachidonic acid. Cerebral arterial microsomes incubated with [(14)C]arachidonic acid produced 20-HETE. An elevation in transmural pressure from 20 to 140 mm Hg increased 20-HETE concentration by 6-fold in cerebral arteries as measured by gas chromatography/mass spectrometry. In vivo, inhibition of vascular 20-HETE formation with N-methylsulfonyl-12, 12-dibromododec-11-enamide (DDMS), or its vasoconstrictor actions using 15-HETE or 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE), attenuated autoregulation of CBF to elevations of arterial pressure. In vitro application of DDMS, 15-HETE, or 20-HEDE eliminated pressure-induced constriction of rat middle cerebral arteries, and 20-HEDE and 15-HETE blocked the vasoconstriction action of 20-HETE. Taken together, these data suggest an important role for 20-HETE in the autoregulation of CBF.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current

Debebe Gebremedhin; Andrew R. Lange; William B. Campbell; Cecilia J. Hillard; David R. Harder

The CB1 subtype of the cannabinoid receptor is present on neurons in the brain and mediates the perceptual effects of Delta9-tetrahydrocannabinol and other cannabinoids. We found that cat cerebral arterial smooth muscle cells (VSMC) contain the protein for the CB1 receptor and express a cDNA that has >98% amino acid homology to the CB1 cDNA expressed in rat and human neurons. Activation of the CB1 cannabinoid receptor has been shown to decrease the opening of N-type voltage-gated Ca2+ channels in neurons through a pertussis toxin-sensitive GTP-binding protein. In the present study we tested the hypothesis that activation of the cannabinoid CB1 receptor in cerebral VSMC inhibits voltage-gated Ca2+ channels and results in cerebral vasodilation. The predominant Ca2+ current identified in cat cerebral VSMC is a voltage-gated, dihydropyridine-sensitive, L-type Ca2+ current. The cannabimimetic drug WIN-55,212-2 (10-100 nM) induced concentration-dependent inhibition of peak L-type Ca2+ current, which reached a maximum of 82 +/- 4% at 100 nM (n = 14). This effect was mimicked by the putative endogenous CB1-receptor agonist anandamide, which produced a concentration-related reduction of peak L-type Ca2+ current with a maximum inhibition (at 300 nM) of 39 +/- 4% (n = 12). The inhibitory effects of both ligands on peak L-type Ca2+ currents were abolished by pertussis toxin pretreatment and application of the CB1-receptor antagonist SR-141716A (100 nM, n = 5). Both WIN-55,212-2 and anandamide produced concentration-dependent relaxation of preconstricted cerebral arterial segments that was abolished by SR-141716A. These results indicate that the CB1 receptor is expressed in cat cerebral VSMC and that the cerebral vasculature is one of the targets for endogenous cannabinoids. These findings suggest that the CB1 receptor and its endogenous ligand may play a fundamental role in the regulation of cerebral arterial tone and reactivity by modulating the influx of Ca2+ through L-type Ca2+ channels.


Circulation Research | 1993

20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries

Yunn Hwa Ma; Debebe Gebremedhin; Michal Laniado Schwartzman; John R. Falck; Joan E. Clark; Bettie Sue Siler Masters; David R. Harder; Richard J. Roman

Recent studies have indicated that renal arteries can produce 20-hydroxyeicosatetraenoic acid (20-HETE) and suggest the potential involvement of a P450 metabolite of arachidonic acid in the myogenic activation of canine renal arteries. In the present study, the effects of 20-HETE on isolated canine renal arcuate arteries were studied. Administration of 20-HETE to the bath or the lumen at concentrations of 0.01-1 microM produced a graded reduction in the diameter of these vessels. In contrast, 19(R)-HETE was a vasodilator, whereas 19(S)-HETE was relatively inactive. The vasoconstrictor response to 20-HETE was not altered by the cyclooxygenase inhibitor indomethacin, endoperoxide/thromboxane receptor antagonist SQ29548, or combined blockade of the cyclooxygenase, lipoxygenase, and P450 pathways using indomethacin, baicalein, and 7-ethoxyresorufin. The response to 20-HETE was associated with depolarization and a sustained increase in the intracellular calcium concentration in renal vascular smooth muscle cells. Patch-clamp studies indicated that 20-HETE significantly reduced mean open time, the open-state probability, and the frequency of opening of a 117-pS K+ channel recorded from renal vascular smooth muscle cells in the cell-attached mode. Microsomes prepared from the renal cortex of dogs produced 20-HETE and 20-carboxyarachidonic acid when incubated with [14C]arachidonic acid. These results indicate that 20-HETE is an endogenous constrictor of canine renal arcuate arteries. The vasoconstrictor response to 20-HETE resembles the myogenic activation of these vessels after elevations in transmural pressure and suggests a potential role for this substance in the regulation of renal vascular tone.


Stroke | 1998

Functional Hyperemia in the Brain Hypothesis for Astrocyte-Derived Vasodilator Metabolites

David R. Harder; Nabil J. Alkayed; Andrew R. Lange; Debebe Gebremedhin; Richard J. Roman

BACKGROUND Cerebral blood flow is tightly coupled to neuronal metabolic activity, a phenomenon referred to as functional hyperemia. The mechanisms underlying functional hyperemia in the brain have been extensively studied, but the link between neuronal activation and nutritive blood flow has yet to be defined. Recent investigations by our laboratory and others have identified a potential role for astrocytes as an intermediary cell type in this process. SUMMARY OF REVIEW This short review will develop the hypothesis that cytochrome P450 epoxygenase activity in astrocytes catalyzes formation of epoxyeicosatrienoic acids (EETs), which act as potent dilators of cerebral vessels and are released in response to glutamate receptor activation within astrocytes. Neuronal activity stimulates release of arachidonic acid from the phospholipid pool of astrocytic membranes. We provide evidence that the arachidonic acid released on stimulation of glutamate receptors within astrocytes is metabolized by cytochrome P450 2C11 cDNA enzymes into EETs. CONCLUSIONS The EETs thus formed will be released and activate K+ channels, increase outward K+ current, and hyperpolarize the plasma membrane. The resulting membrane hyperpolarization inhibits voltage-gated Ca2+ channels and leads to arteriolar dilation, thereby increasing regional nutritive blood flow in response to neuronal activity.


Journal of Biological Chemistry | 1997

20-Hydroxyeicosatetraenoic Acid-induced Vasoconstriction and Inhibition of Potassium Current in Cerebral Vascular Smooth Muscle Is Dependent on Activation of Protein Kinase C

Andrew R. Lange; Debebe Gebremedhin; Jayashree Narayanan; David R. Harder

20-Hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450 metabolite of arachidonic acid, is a potent vasoconstrictor, and has been implicated in the myogenic activation of renal and cerebral arteries. We examined the role of protein kinase C (PKC) in the signal transduction pathway by which 20-HETE induces vasoconstriction and inhibition of whole-cell K+current in cat cerebral vascular smooth muscle. 20-HETE induced a concentration-dependent constriction in isolated pressurized cat middle cerebral arteries (−29 ± 8% at 1 μm). However, in the presence of anN-myristoylated PKC pseudosubstrate inhibitor peptide (MyrΨPKC-I(19–27)), 20-HETE induced a concentration-dependent vasodilation (26 ± 4% at 1 μm). In whole-cell voltage clamp studies, application of 20-HETE inhibited whole-cell K+ current recorded in cat cerebral vascular smooth muscle cells, an effect that was attenuated by MyrΨPKC-I(19–27). Further evidence for the role of PKC activation in response to 20-HETE is the finding that 20-HETE increased the phosphorylation of myristoylated, alanine-rich PKC substrate in cultured cat cerebral vascular smooth muscle cells in a concentration- and PKC-dependent manner. These data provide evidence that PKC is an integral part of the signal transduction pathway by which 20-HETE elicits vasoconstriction of cerebral arteries and inhibition of whole-cell K+ current in cat cerebral vascular smooth muscle.


Stroke | 1996

Molecular Characterization of an Arachidonic Acid Epoxygenase in Rat Brain Astrocytes

Nabil J. Alkayed; Jayashree Narayanan; Debebe Gebremedhin; Meetha Medhora; Richard J. Roman; David R. Harder

BACKGROUND AND PURPOSE Brain parenchymal tissue metabolizes arachidonic acid (AA) via the cytochrome P450 (P450) epoxygenase to epoxyeicosatrienoic acids (EETs). EETs dilate cerebral arterioles and enhance K+ current in vascular smooth muscle cells from large cerebral arteries. Because of the close association between astrocytes and the cerebral microcirculation, we hypothesized that brain epoxygenase activity originates from astrocytes. This study was designed to identify and localize an AA epoxygenase in rat brain astrocytes. We also tested the effect of EETs on whole-cell K+ current in rat cerebral microvascular smooth muscle cells. METHODS A functional assay was used to demonstrate endogenous epoxygenase activity of intact astrocytes in culture. Oligonucleotide primers derived from the sequence of a known hepatic epoxygenase, P450 2C11, were used in reverse transcription/polymerase chain reaction of RNA isolated from cultured rat astrocytes. The appropriate size reverse transcription/polymerase chain reaction product was cloned into a plasmid vector and sequenced. A polyclonal peptide antibody was raised against P450 2C11 and used in Western blotting and immunocytochemical staining of cultured astrocytes. A voltage-clamp technique was used to test the effect of EETs on whole-cell K+ current recorded from rat cerebral microvascular muscle cells. RESULTS Based on elution time of known standards and inhibition by miconazole, an inhibitor of P450 AA epoxygenase, cultured astrocytes produce 11,12- and 14,15-EETs when incubated with AA. The sequence of a cDNA derived from RNA isolated from cultured rat astrocytes was 100% identical to P450 2C11. Immunoreactivity to glial fibrillary acidic protein, a marker for astrocytes, colocalized with 2C11 immunoreactivity in double immunochemical staining of cultured astrocytes. EETs enhanced outward K+ current in muscle cells from rat brain microvessels. CONCLUSIONS Our results demonstrate that a P450 2C11 mRNA is expressed in astrocytes and may be responsible for astrocyte epoxygenase activity. Given the vasodilatory effect of EETs, our findings suggest a role for astrocytes in the control of cerebral microcirculation mediated by P450 2C11-catalyzed conversion of AA to EETs. The mechanism of EET-induced dilation of rat cerebral microvessels may involve activation of K+ channels.


The Journal of Physiology | 1998

Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current

Debebe Gebremedhin; Andrew R. Lange; Jayashree Narayanan; Mikael R. Aebly; Elizabeth R. Jacobs; David R. Harder

1 Cerebral arteries express cytochrome P450 4A enzymes (P450 4A) and produce 20‐ hydroxyeicosatetraenoic acid (20‐HETE), a potent constrictor of pial arterioles. It is not known which cell type in the vessel wall is responsible for the formation of 20‐HETE. We examined whether freshly isolated cerebral arterial muscle cells (VSMCs) express P450 4A and produce 20‐HETE. We also studied the effect of 20‐HETE on pressurized cerebral arteries and on whole‐cell L‐type Ca2+current (ICa) recorded in cat cerebral VSMCs. 2 Cat cerebral VSMCs incubated with [14C]arachidonic acid ([14C]AA) produced 20‐HETE (3.9 ± 1.1 pmol min−1 (mg protein)−1). 3 Reverse transcription‐polymerase chain reaction studies revealed that cat cerebral VSMCs express mRNA for P450 4A which metabolizes AA to 20‐HETE. Cloning and sequencing of the cDNA amplified from mRNA isolated from VSMCs showed > 96 % amino acid homology to the rat and human P450 4A2 and 4A3. 4 20‐HETE (1–300 nM) induced a concentration‐dependent constriction of cat cerebral arteries, which was inhibited by nifedipine. 5 Addition of 10 and 100 nM 20‐HETE to the bath increased peak ICa by 50 ± 3 and 100 ± 10 %, respectively. This effect was not influenced by altering the frequency of depolarization. 20‐HETE (100 nM) failed to increase ICa in the presence of nifedipine. 6 These results demonstrate that cat cerebral VSMCs express P450 4A enzyme, and produce 20‐HETE which activates L‐type Ca2+ channel current to promote cerebral vasoconstriction.


Journal of Vascular Research | 1997

Cytochrome P450 Metabolites of Arachidonic Acid as Intracellular Signaling Molecules in Vascular Tissue

David R. Harder; Andrew R. Lange; Debebe Gebremedhin; Eric K. Birks; Richard J. Roman

Recent studies from our laboratory have indicated that vascular smooth muscle cells (VSMC) metabolize arachidonic acid via a P4504A-dependent pathway to 20-hydroxyeicosatetraenoic acid (20-HETE), and that this system serves as a novel signal transduction pathway that plays a central role in the regulation of vascular tone. The major metabolite of arachidonic acid formed in cerebral and renal arteries is 20-HETE. The mRNA and protein for P4504A enzymes, which produce 20-HETE, have been localized in VSMC. 20-HETE is a potent vasoconstrictor, that acts in part by inhibition of the opening of the large conductance, calcium-activated potassium channel, and depolarizes VSMC membrane. A preliminary study also indicated that 20-HETE activates the L-type calcium current in cerebral arterial smooth muscle. Inhibition of the endogenous production of 20-HETE in renal and cerebral arterioles attenuates pressure-dependent myogenic tone in vitro, as well as autoregulation of renal and cerebral blood flow in vivo. There is also evidence that indicates that nitric oxide regulates the formation of 20-HETE by binding and inactivating the P450 heme moiety, thus providing a negative feedback control mechanism for this system. The data outlined suggest that 20-HETE could act as a intracellular second messenger that plays an integral role in the signal transduction processes underlying the development of pressure-dependent myogenic tone.


Hypertension | 2004

Degenerin/Epithelial Na+ Channel Proteins: Components of a Vascular Mechanosensor

Heather A. Drummond; Debebe Gebremedhin; David R. Harder

Mechanosensitive ion channels are thought to mediate stretch-induced contraction in vascular smooth muscle cells (VSMCs); however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although recent reports suggest degenerin/epithelial Na+ channel (DEG/ENaC) proteins may be mechanosensors in sensory neurons, their role as mechanosensors in vascular tissue has not been examined. We first tested whether DEG/ENaC subunits are expressed in cerebral blood vessels and VSMCs and then examined their role as mechanosensors in mediating the myogenic response in intact blood vessels. Using RT-PCR, we found ENaC transcripts expressed in rat cerebral arteries and freshly dissociated rat cerebral VSMCs. We also detected ENaC expression in isolated blood vessels and VSMCs by immunoblotting and immunolocalization. Moreover, inhibition of ENaC with amiloride (1 &mgr;mol/L) and benzamil (30 nmol/L, 1 &mgr;mol), an amiloride analog, blocked myogenic constriction in isolated rat cerebral arteries. These data suggest that DEG/ENaC proteins are required for vessel responses to pressure and are consistent with the evolutionary conservation of mechanosensory function of DEG/ENaC proteins.

Collaboration


Dive into the Debebe Gebremedhin's collaboration.

Top Co-Authors

Avatar

David R. Harder

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Richard J. Roman

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

John R. Falck

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jayashree Narayanan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

William B. Campbell

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Lange

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Elizabeth R. Jacobs

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Phillip F. Pratt

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge