Debin Lei
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Debin Lei.
Nature Neuroscience | 2004
Jianxin Bao; Hana Lin; Yannan Ouyang; Debin Lei; Abdullah Osman; Tae Wan Kim; Lin Mei; Penggao Dai; Kevin K. Ohlemiller; Richard T. Ambron
Neuregulin-1 (Nrg-1) contains an intracellular domain (Nrg-ICD) that translocates into the nucleus, where it may regulate gene expression upon neuronal depolarization. However, the identity of its target promoters and the mechanisms by which it regulates transcription have been elusive. Here we report that, in the mouse cochlea, synaptic activity increases the level of nuclear Nrg-ICD and upregulates postsynaptic density protein-95 (PSD-95), a scaffolding protein that is enriched in post-synaptic structures. Nrg-ICD enhances the transcriptional activity of the PSD-95 promoter by binding to a zinc-finger transcription factor, Eos. The Nrg-ICD–Eos complex induces endogenous PSD-95 expression in vivo through a signaling pathway that is mostly independent of γ-secretase regulation. This upregulation of PSD-95 expression by the Nrg-ICD–Eos complex provides a molecular basis for activity-dependent synaptic plasticity.
The Journal of Neuroscience | 2005
Jianxin Bao; Debin Lei; Yafei Du; Kevin K. Ohlemiller; Arthur L. Beaudet; Lorna W. Role
Age-related hearing loss (presbycusis) is a major health concern for the elderly. Loss of spiral ganglion neurons (SGNs), the primary sensory relay of the auditory system, is associated consistently with presbycusis. The causative molecular events responsible for age-related loss of SGNs are unknown. Recent reports directly link age-related neuronal loss in cerebral cortex with the loss of high-affinity nicotine acetylcholine receptors (nAChRs). In cochlea, cholinergic synapses are made by olivocochlear efferent fibers on the outer hair cells that express α9 nAChR subunits and on the peripheral projections of SGNs that express α2, α4-7, and β2-3 nAChR subunits. A significantly decreased expression of the β2 nAChR subunit in SGNs was found specifically in mice susceptible to presbycusis. Furthermore, mice lacking the β2 nAChR subunit (β2-/-), but not mice lacking the α5 nAChR subunit (α5-/-), have dramatic hearing loss and significant reduction in the number of SGNs. Our findings clearly established a requirement for β2 nAChR subunit in the maintenance of SGNs during aging.
Hearing Research | 2007
Patricia M. Gagnon; Dwayne D. Simmons; Jianxin Bao; Debin Lei; Amanda Ortmann; Kevin K. Ohlemiller
The protective benefits of hypoxic preconditioning (HPC) against permanent noise-induced hearing loss (NIHL) were investigated in mice. Hypoxia induced by exposure to 8% O2 for 4 h conferred significant protection against damaging broadband noise delivered 24-48 h later in male and female CBA/J (CBA) and CBA/CaJ mice. No protection was found in C57BL/6 (B6) mice, their B6.CAST-Cdh23(CAST) (B6.CAST) congenics, or in CBAxB6 F1 hybrid mice over the same interval, suggesting that the potential for HPC depends on one or a few autosomal recessive alleles carried by CBA-related strains, and is not influenced by the Cdh23 locus. Protection against NIHL in CBA mice was associated with significant up-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha) within the organ of Corti, not found in B6.CAST. In both CBA and B6.CAST mice, some hypoxia-noise intervals shorter than 24 h were associated with exacerbation of NIHL. Cellular cascades underlying the early exacerbation of NIHL by hypoxia are therefore common to both strains, and not mechanistically linked to later protection. Elucidation of the events that underlie HPC, and how these are impacted by genetics, may lead to pharmacologic approaches to mimic HPC, and may help identify individuals with elevated risk of NIHL.
Molecular Neurodegeneration | 2009
Norelle C. Wildburger; Avary Lin-Ye; Michelle A Baird; Debin Lei; Jianxin Bao
Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and Cav3.3) based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. Among these three subunits, α1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from α1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the α1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders.
Hearing Research | 2011
Debin Lei; Xia Gao; Philip Perez; Kevin K. Ohlemiller; Chien-Chang Chen; Kevin P. Campbell; Aizhen Yang Hood; Jianxin Bao
Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Ca(v)3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons.
Molecular Neurodegeneration | 2010
Benjamin Fu; Colleen G. Le Prell; Dwayne D. Simmons; Debin Lei; Angela D. Schrader; Amelia B Chen; Jianxin Bao
Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis), a major cause of which is the loss of outer hair cells (OHCs) and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC) efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP), under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.
Stem Cells | 2011
Zhaoyu Lin; Philip Perez; Debin Lei; Jingyue Xu; Xiang Gao; Jianxin Bao
Induced pluripotent stem cells (iPSCs) can be reprogrammed from adult somatic cells by transduction with Oct4, Sox2, Klf4, and c‐Myc, but the molecular cascades initiated by these factors remain poorly understood. Impeding their elucidation is the stochastic nature of the iPS induction process, which results in heterogeneous cell populations. Here we have synchronized the reprogramming process by a two‐phase induction: an initial stable intermediate phase following transduction with Oct4, Klf4, and c‐Myc, and a final iPS phase following overexpression of Sox2. This approach has enabled us to examine temporal gene expression profiles, permitting the identification of Sox2 downstream genes critical for induction. Furthermore, we have validated the feasibility of our new approach by using it to confirm that downregulation of transforming growth factor β signaling by Sox2 proves essential to the reprogramming process. Thus, we present a novel means for dissecting the details underlying the induction of iPSCs, an approach with significant utility in this arena and the potential for wide‐ranging implications in the study of other reprogramming mechanisms. STEM Cells 2011;29:1963–1974.
Brain Research | 2009
David X. Jin; Zhaoyu Lin; Debin Lei; Jianxin Bao
Glucocorticoids, which are steroidal stress hormones, have a broad array of biological functions. Synthetic glucocorticoids are frequently used therapeutically for many pathologic conditions, including diseases of the inner ear; however, their exact functions in the cochlea are not completely understood. Recent work has clearly demonstrated the presence of glucocorticoid signaling pathways in the cochlea and elucidated their protective roles against noise-induced hearing loss. Furthermore, indirect evidence suggests the involvement of glucocorticoids in age-related loss of spiral ganglion neurons and extensive studies in the central nervous system demonstrate profound effects of glucocorticoids on neuronal functions. With the advancement of recent pharmacologic and genetic tools, the role of these pathways in the survival of spiral ganglion neurons after noise exposure and during aging should be revealed.
Molecular Neurodegeneration | 2006
Mingbo Han; Frank Schottler; Debin Lei; Elizabeth Y Dong; Alexander Bryan; Jianxin Bao
BackgroundCognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2) in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR) positive neurons in the mouse dentate gyrus during aging.ResultIn normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line.ConclusionThese data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.
Hearing Research | 2013
Jianxin Bao; Michelle Hungerford; Randi Luxmore; Dalian Ding; Ziyu Qiu; Debin Lei; Aizhen Yang; Ruqiang Liang; Kevin K. Ohlemiller