Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deblina Guha is active.

Publication


Featured researches published by Deblina Guha.


Stem Cell Research & Therapy | 2014

Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop

Shravanti Mukherjee; Minakshi Mazumdar; Samik Chakraborty; Argha Manna; Shilpi Saha; Poulami Khan; Pushpak Bhattacharjee; Deblina Guha; Arghya Adhikary; Sanhita Mukhjerjee; Tanya Das

IntroductionThe existence of cancer stem cells (CSCs) has been associated with tumor initiation, therapy resistance, tumor relapse, angiogenesis, and metastasis. Curcumin, a plant ployphenol, has several anti-tumor effects and has been shown to target CSCs. Here, we aimed at evaluating (i) the mechanisms underlying the aggravated migration potential of breast CSCs (bCSCs) and (ii) the effects of curcumin in modulating the same.MethodsThe migratory behavior of MCF-7 bCSCs was assessed by using cell adhesion, spreading, transwell migration, and three-dimensional invasion assays. Stem cell characteristics were studied by using flow cytometry. The effects of curcumin on bCSCs were deciphered by cell viability assay, Western blotting, confocal microscopy, and small interfering RNA (siRNA)-mediated gene silencing. Evaluations of samples of patients with breast cancer were performed by using immunohistochemistry and flow cytometry.ResultsHere, we report that bCSCs are endowed with aggravated migration property due to the inherent suppression of the tumor suppressor, E-cadherin, which is restored by curcumin. A search for the underlying mechanism revealed that, in bCSCs, higher nuclear translocation of beta-catenin (i) decreases E-cadherin/beta-catenin complex formation and membrane retention of beta-catenin, (ii) upregulates the expression of its epithelial-mesenchymal transition (EMT)-promoting target genes (including Slug), and thereby (iii) downregulates E-cadherin transcription to subsequently promote EMT and migration of these bCSCs. In contrast, curcumin inhibits beta-catenin nuclear translocation, thus impeding trans-activation of Slug. As a consequence, E-cadherin expression is restored, thereby increasing E-cadherin/beta-catenin complex formation and cytosolic retention of more beta-catenin to finally suppress EMT and migration of bCSCs.ConclusionsCumulatively, our findings disclose that curcumin inhibits bCSC migration by amplifying E-cadherin/beta-catenin negative feedback loop.


PLOS ONE | 2014

Capsaicin-Induced Activation of p53-SMAR1 Auto-Regulatory Loop Down-Regulates VEGF in Non-Small Cell Lung Cancer to Restrain Angiogenesis

Samik Chakraborty; Arghya Adhikary; Minakshi Mazumdar; Shravanti Mukherjee; Pushpak Bhattacharjee; Deblina Guha; Tathagata Choudhuri; Samit Chattopadhyay; Gaurisankar Sa; Aparna Sen; Tanya Das

Lung cancer is the leading cause of cancer-related deaths worldwide. Despite decades of research, the treatment options for lung cancer patients remain inadequate, either to offer a cure or even a substantial survival advantage owing to its intrinsic resistance to chemotherapy. Our results propose the effectiveness of capsaicin in down-regulating VEGF expression in non-small cell lung carcinoma (NSCLC) cells in hypoxic environment. Capsaicin-treatment re-activated p53-SMAR1 positive feed-back loop in these cells to persuade p53-mediated HIF-1α degradation and SMAR1-induced repression of Cox-2 expression that restrained HIF-1α nuclear localization. Such signal-modulations consequently down regulated VEGF expression to thwart endothelial cell migration and network formation, pre-requisites of angiogenesis in tumor micro-environment. The above results advocate the candidature of capsaicin in exclusively targeting angiogenesis by down-regulating VEGF in tumor cells to achieve more efficient and cogent therapy of resistant NSCLC.


Oncogene | 2016

Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4 + migrating cancer stem cells

Sanhita Mukherjee; Argha Manna; Pushpak Bhattacharjee; Minakshi Mazumdar; Shilpi Saha; Samik Chakraborty; Deblina Guha; Arghya Adhikary; D Jana; M Gorain; Shravanti Mukherjee; G C Kundu; D K Sarkar; Tanya Das

Although the role of metastatic cancer stem cells (mCSCs) in tumor progression has been well documented, our study reveals a hitherto unidentified role of tumorigenic intrinsic CSCs (iCSCs) in breast cancer metastasis. We show that unlike highly migratory mCSCs residing in the breast tumor disseminating/peripheral regions, iCSCs populate the inner mass of the tumor and are non-migratory. However iCSCs, via paracrine signaling, induce conversion of non-stem cancer cells to CSCs that (i) are identical to the previously reported mCSCs, and (ii) in contrast to iCSCs, express chemokine receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), which is crucial for their metastatic potential. These mCSCs also demonstrate high in vivo tumorigenicity. Physical non-participation of iCSCs in metastasis is further validated in vivo, where only mCSCs are found to exist in the metastatic sites, lymph nodes and bone marrow, whereas the primary tumor retains both iCSCs and mCSCs. However, iCSCs ensure metastasis since their presence is crucial for deliverance of highly metastatic CXCR4+ mCSCs to the migrating fraction of cells. Cumulatively, these results unveil a novel role of iCSCs in breast cancer metastasis as parental regulators of CXCR4+ mCSCs, and highlight the therapeutic requisite of targeting iCSCs, but not CXCR4+ mCSCs, to restrain breast cancer metastasis from the root by inhibiting the generation of mCSCs from iCSCs. Considering the pivotal role of iCSCs in tumor metastasis, the possibility of metastasis to be a ‘stem cell phenomena’ is suggested.


BMC Cancer | 2016

Aspirin inhibits epithelial-to-mesenchymal transition and migration of oncogenic K-ras-expressing non-small cell lung carcinoma cells by down-regulating E-cadherin repressor Slug

Poulami Khan; Argha Manna; Shilpi Saha; Suchismita Mohanty; Shravanti Mukherjee; Minakshi Mazumdar; Deblina Guha; Tanya Das

BackgroundCancer metastasis is one of the most common causes of treatment failure and death in cancer patients. It has been acknowledged that aberrant activation of epithelial-to-mesenchymal transition (EMT) program, endows cancer cells with metastatic competence for which E-cadherin switch is a well-established hallmark. Suppression of E-cadherin by its transcriptional repressor Slug is thus a determining factor for EMT. Here, we aimed at discerning (i) the molecular mechanisms that regulate Slug/E-cadherin axis in oncogenic K-ras-expressing non-small cell lung carcinoma (NSCLC) cells, and (ii) the effect of aspirin in modulating the same.MethodsThe migratory behaviour of NSCLC cell line A549 were deciphered by wound healing assay. Further assessment of the molecular mechanisms was done by western blotting, RT-PCR, confocal microscopy, chromatin immunoprecipitation and small interfering RNA (siRNA)-mediated gene silencing.ResultsHere we report that in oncogenic K-ras-expressing A549 cells, Ras/ERK downstream Elk-1 forms p-Elk-1-p300 complex that being directly recruited to SLUG promoter acetylates the same to ensure p65NFκB binding for transcriptional up-regulation of Slug, a transcriptional repressor of E-cadherin. Aspirin inhibits EMT and decelerates the migratory potential of A549 cells by down-regulating Slug and thereby up-regulating E-cadherin. Aspirin impedes activation and nuclear translocation of p65NFκB, essential for this transcription factor being available for SLUG promoter binding. As a consequence, Slug transcription is down-regulated relieving A549 cells from Slug-mediated repression of E-cadherin transcription, thereby diminishing the metastatic potential of these oncogenic Ras-expressing NSCLC cells.ConclusionsCumulatively, these results signify a crucial role of the anti-inflammatory agent aspirin as a novel negative regulator of epithelial-to-mesenchymal transition thereby suggesting its candidature as a promising tool for deterring metastasis of highly invasive K-ras-expressing NSCLC cells.


Scientific Reports | 2016

Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer

Pallab Ray; Deblina Guha; Juni Chakraborty; Shuvomoy Banerjee; Arghya Adhikary; Samik Chakraborty; Tanya Das; Gaurisankar Sa

Tumor suppressor p53 preserves the genomic integrity by restricting anomaly at the gene level. The hotspots for mutation in half of all colon cancers reside in p53. Hence, in a p53-mutated cellular milieu targeting cancer cells may be achievable by targeting the paralogue(s) of p53. Here we have shown the effectiveness of crocetin, a dietary component, in inducing apoptosis of colon cancer cells with varying p53 status. In wild-type p53-expressing cancer cells, p53 in one hand transactivates BAX and in parallel up-regulates p53-induced death domain protein (PIDD) that in turn cleaves and activates BID through caspase-2. Both BAX and t-BID converge at mitochondria to alter the transmembrane potential thereby leading to caspase-9 and caspase-3-mediated apoptosis. In contrast, in functional p53-impaired cells, this phytochemical exploits p53-paralogue p73, which up-regulates FAS to cleave BID through FAS-FADD-caspase-8-pathway. These findings not only underline the phenomenon of functional switch-over from p53 to p73 in p53-impaired condition, but also validate p73 as a promising and potential target for cancer therapy in absence of functional p53.


International Journal of Oncology | 2015

Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma

Shilpi Saha; Pushpak Bhattacharjee; Deblina Guha; Kirti Kajal; Poulami Khan; Sreeparna Chakraborty; Shravanti Mukherjee; Shrutarshi Paul; Rajkumar Manchanda; Anil Khurana; Debadatta Nayak; Rathin Chakrabarty; Gaurisankar Sa; Tanya Das

Adverse side effects of chemotherapy during cancer treatment have shifted considerable focus towards therapies that are not only targeted but are also devoid of toxic side effects. We evaluated the antitumorigenic activity of sulphur, and delineated the molecular mechanisms underlying sulphur-induced apoptosis in non-small cell lung carcinoma (NSCLC) cells. A search for the underlying mechanism revealed that the choice between the two cellular processes, NFκBp65-mediated survival and p53-mediated apoptosis, was decided by the competition for a limited pool of transcriptional coactivator protein p300 in NSCLC cells. In contrast, sulphur inhibited otherwise upregulated survival signaling in NSCLC cells by perturbing the nuclear translocation of p65NFκB, its association with p300 histone acetylase, and subsequent transcription of Bcl-2. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic mitochondrial death cascade. Overall, the findings of this preclinical study clearly delineated the molecular mechanism underlying the apoptogenic effect of the non-toxic homeopathic remedy, sulphur, in NSCLC cells.


Scientific Reports | 2017

Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8 + Treg cells

Sreeparna Chakraborty; Abir K. Panda; Sayantan Bose; Dia Roy; Kirti Kajal; Deblina Guha; Gaurisankar Sa

T-regulatory cells are an upsurge in the tumor microenvironment and induce immune-evasion. CD4+ Treg cells are well characterized whereas the role of CD8+ Tregs in cancer has recently started to crease attention. Here, we report an augmentation CD8+FOXP3+ Tregs in breast tumor microenvironment. FOXP3, the lineage-specific transcription factor, is a dominant regulator of Treg cell development and function. FOXP3 is induced preferentially by divergent signaling in CD4+ Treg cells. But how FOXP3 is induced and maintained in tumor-CD8+ Tregs is the Cinderella of the investigation. We observed that RUNX3, a CD8+ lineage-specific transcription factor, binds at the FOXP3-promoter to induce its transcription. In addition to promoter activation, involvement of cis-elements CNS1 and CNS2 in the transcriptional regulation of FOXP3 was also evident in these cells. SMAD3 binds to CNS1 region and acts as transcription inducer, whereas GATA3 plays a temporal role in the FOXP3 transcription by differential chromatin modification in CNS regions. In CNS1 region, GATA3 acts as a repressor for FOXP3 in naïve CD8+ T cells. Whereas in CD8+ Tregs, GATA3 binds directly at CNS2 region and persuaded the maintenance of FOXP3. Therefore, the intervention of these concerted transcriptional machinery may have a therapeutic potential in immunotherapy of cancer.


Scientific Reports | 2016

G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

Taniya Saha; Deblina Guha; Argha Manna; Abir K. Panda; Jyotsna Bhat; Subhrangsu Chatterjee; Gaurisankar Sa

p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S.


Indian Journal of Research in Homoeopathy | 2015

Republished: Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma

Shilpi Saha; Bhattacharjee Pushpak; Deblina Guha; Kirti Kajal; Poulami Khan; Sreeparna Chakraborty; Shravanti Mukherjee; Shrutarshi Paul; Rajkumar Manchanda; Anil Khurana; Debadatta Nayak; Rathin Chakrabarty; Gaurisankar Sa; Tanya Das

Adverse side effects of chemotherapy during cancer treatment have shifted considerable focus towards therapies that are not only targeted but are also devoid of toxic side effects. We evaluated the antitumorigenic activity of sulphur, and delineated the molecular mechanisms underlying sulphurinduced apoptosis in non-small cell lung carcinoma (NSCLC) cells. A search for the underlying mechanism revealed that the choice between the two cellular processes, NFκBp65-mediated survival and p53-mediated apoptosis, was decided by the competition for a limited pool of transcriptional coactivator protein p300 in NSCLC cells. In contrast, sulphur inhibited otherwise upregulated survival signaling in NSCLC cells by perturbing the nuclear translocation of p65NFκB, its association with p300 histone acetylase, and subsequent transcription of Bcl-2. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic mitochondrial death cascade. Overall, the findings of this preclinical study clearly delineated the molecular mechanism underlying the apoptogenic effect of the non-toxic homeopathic remedy, sulphur, in NSCLC cells.


Archive | 2014

Ubiquitin–Proteasome System in the Hallmarks of Cancer

Pushpak Bhattacharjee; Minakshi Mazumdar; Deblina Guha; Gaurisankar Sa

The paramount role of ubiquitin–protein conjugation for its ability to regulate protein turnover and nonproteolytic signaling functions has been implicated in the regulation of various biological and pathological phenomena. Malignant cells utilize modified ubiquitination to augment or attenuate signaling pathways on the basis of whether the outcome of this signaling is conducive or not for tumor growth and survival. Hence, there lies a necessity for a fresh view at the ubiquitin-dependent mechanisms that play an important role in human oncological diseases. To control ubiquitination-dependent mechanisms of cell transformation within tumor cells themselves, along with increased rate of protein synthesis, translation and protein quality control processes are often required to support the transforming events for their contribution to the mechanisms of tumor progression. Given that ubiquitin metabolism is governed by enzymes—E1, E2, E3, E4, deubiquitinases (DUBs), and the proteasome—the system as a whole is ripe for target and drug discovery in cancer. Recently, the hallmarks of cancer designated by Hanahan and Weinberg in 2011 comprise ten biological capabilities acquired during the multistep development of tumor. Based on these hallmarks, the present review enlightened the role of ubiquitination in every hallmark for rationalizing the complexities of neoplastic disease and also discusses therapeutic implications targeting the ubiquitin–proteasome system as well as synthetic and natural compounds with potent inhibitory effects.

Collaboration


Dive into the Deblina Guha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge