Debora Donato
Yahoo!
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Debora Donato.
web search and data mining | 2008
Eugene Agichtein; Carlos Castillo; Debora Donato; Aristides Gionis; Gilad Mishne
The quality of user-generated content varies drastically from excellent to abuse and spam. As the availability of such content increases, the task of identifying high-quality content sites based on user contributions --social media sites -- becomes increasingly important. Social media in general exhibit a rich variety of information sources: in addition to the content itself, there is a wide array of non-content information available, such as links between items and explicit quality ratings from members of the community. In this paper we investigate methods for exploiting such community feedback to automatically identify high quality content. As a test case, we focus on Yahoo! Answers, a large community question/answering portal that is particularly rich in the amount and types of content and social interactions available in it. We introduce a general classification framework for combining the evidence from different sources of information, that can be tuned automatically for a given social media type and quality definition. In particular, for the community question/answering domain, we show that our system is able to separate high-quality items from the rest with an accuracy close to that of humans
international acm sigir conference on research and development in information retrieval | 2007
Carlos Castillo; Debora Donato; Aristides Gionis; Vanessa Murdock; Fabrizio Silvestri
Web spam can significantly deteriorate the quality of search engine results. Thus there is a large incentive for commercial search engines to detect spam pages efficiently and accurately. In this paper we present a spam detection system that combines link-based and content-based features, and uses the topology of the Web graph by exploiting the link dependencies among the Web pages. We find that linked hosts tend to belong to the same class: either both are spam or both are non-spam. We demonstrate three methods of incorporating the Web graph topology into the predictions obtained by our base classifier: (i) clustering the host graph, and assigning the label of all hosts in the cluster by majority vote, (ii) propagating the predicted labels to neighboring hosts, and (iii) using the predicted labels of neighboring hosts as new features and retraining the classifier. The result is an accurate system for detecting Web spam, tested on a large and public dataset, using algorithms that can be applied in practice to large-scale Web data.
Physical Review E | 2006
Andrea Capocci; Vito D. P. Servedio; Francesca Colaiori; Luciana S. Buriol; Debora Donato; Stefano Leonardi; Guido Caldarelli
We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with those of the World Wide Web, despite the very different growth mechanism. In particular, we measure a scale-invariant distribution of the in and out degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users, who are responsible of its evolution, can act globally on the network.
international acm sigir conference on research and development in information retrieval | 2006
Carlos Castillo; Debora Donato; Luca Becchetti; Paolo Boldi; Stefano Leonardi; Massimo Santini; Sebastiano Vigna
We describe the WEBSPAM-UK2006 collection, a large set of Web pages that have been manually annotated with labels indicating if the hosts are include Web spam aspects or not. This is the first publicly available Web spam collection that includes page contents and links, and that has been labelled by a large and diverse set of judges.
ACM Transactions on The Web | 2008
Luca Becchetti; Carlos Castillo; Debora Donato; Ricardo A. Baeza-Yates; Stefano Leonardi
We propose link-based techniques for automatic detection of Web spam, a term referring to pages which use deceptive techniques to obtain undeservedly high scores in search engines. The use of Web spam is widespread and difficult to solve, mostly due to the large size of the Web which means that, in practice, many algorithms are infeasible. We perform a statistical analysis of a large collection of Web pages. In particular, we compute statistics of the links in the vicinity of every Web page applying rank propagation and probabilistic counting over the entire Web graph in a scalable way. These statistical features are used to build Web spam classifiers which only consider the link structure of the Web, regardless of page contents. We then present a study of the performance of each of the classifiers alone, as well as their combined performance, by testing them over a large collection of Web link spam. After tenfold cross-validation, our best classifiers have a performance comparable to that of state-of-the-art spam classifiers that use content attributes, but are orthogonal to content-based methods.
international acm sigir conference on research and development in information retrieval | 2010
Ilaria Bordino; Carlos Castillo; Debora Donato; Aristides Gionis
Defining a measure of similarity between queries is an interesting and difficult problem. A reliable query-similarity measure can be used in a variety of applications such as query recommendation, query expansion, and advertising. In this paper, we exploit the information present in query logs in order to develop a measure of semantic similarity between queries. Our approach relies on the concept of the query-flow graph. The query-flow graph aggregates query reformulations from many users: nodes in the graph represent queries, and two queries are connected if they are likely to appear as part of the same search goal. Our query similarity measure is obtained by projecting the graph (or appropriate subgraphs of it) on a low-dimensional Euclidean space. Our experiments show that the measure we obtain captures a notion of semantic similarity between queries and it is useful for diversifying query recommendations.
international conference on data mining | 2008
Ilaria Bordino; Debora Donato; Aristides Gionis; Stefano Leonardi
The problem of mining frequent patterns in networks has many applications, including analysis of complex networks, clustering of graphs, finding communities in social networks, and indexing of graphical and biological databases. Despite this wealth of applications, the current state of the art lacks algorithmic tools for counting the number of subgraphs contained in a large network. In this paper we develop data-stream algorithms that approximate the number of all subgraphs of three and four vertices in directed and undirected networks. We use the frequency of occurrence of all subgraphs to prove their significance in order to characterize different kinds of networks: we achieve very good precision in clustering networks with similar structure. The significance of our method is supported by the fact that such high precision cannot be achieved when performing clustering based on simpler topological properties, such as degree, assortativity, and eigenvector distributions. We have also tested our techniques using swap randomization.
Journal of Physics A | 2008
Debora Donato; Stefano Leonardi; Stefano Millozzi; Panayiotis Tsaparas
Despite being the sum of decentralized and uncoordinated efforts by heterogeneous groups and individuals, the World Wide Web exhibits a well-defined structure, characterized by several interesting properties. This structure was clearly revealed by Broder et al (2000 Graph structure in the web Comput. Netw. 33 309) who presented the evocative bow-tie picture of the Web. Although, the bow-tie structure is a relatively clear abstraction of the macroscopic picture of the Web, it is quite uninformative with respect to the finer details of the Web graph. In this paper, we mine the inner structure of the Web graph. We present a series of measurements on the Web, which offer a better understanding of the individual components of the bow-tie. In the process, we develop algorithmic techniques for performing these measurements. We discover that the scale-free properties permeate all the components of the bow-tie which exhibit the same macroscopic properties as the Web graph itself. However, close inspection reveals that their inner structure is quite distinct. We show that the Web graph does not exhibit self similarity within its components, and we propose a possible alternative picture for the Web graph, as it emerges from our experiments.
string processing and information retrieval | 2007
Carlos Castillo; Debora Donato; Aristides Gionis
We study the problem of predicting the popularity of items in a dynamic environment in which authors post continuously new items and provide feedback on existing items. This problem can be applied to predict popularity of blog posts, rank photographs in a photo-sharing system, or predict the citations of a scientific article using author information and monitoring the items of interest for a short period of time after their creation. As a case study, we show how to estimate the number of citations for an academic paper using information about past articles written by the same author(s) of the paper. If we use only the citation information over a short period of time, we obtain a predicted value that has a correlation of r = 0.57 with the actual value. This is our baseline prediction. Our best-performing system can improve that prediction by adding features extracted from the past publishing history of its authors, increasing the correlation between the actual and the predicted values to r = 0.81.
ACM Transactions on Internet Technology | 2007
Debora Donato; Luigi Laura; Stefano Leonardi; Stefano Millozzi
In this article we present an experimental study of the properties of webgraphs. We study a large crawl from 2001 of 200M pages and about 1.4 billion edges, made available by the WebBase project at Stanford, as well as several synthetic ones generated according to various models proposed recently. We investigate several topological properties of such graphs, including the number of bipartite cores and strongly connected components, the distribution of degrees and PageRank values and some correlations; we present a comparison study of the models against these measures.Our findings are that (i) the WebBase sample differs slightly from the (older) samples studied in the literature, and (ii) despite the fact that these models do not catch all of its properties, they do exhibit some peculiar behaviors not found, for example, in the models from classical random graph theory.Moreover we developed a software library able to generate and measure massive graphs in secondary memory; this library is publicy available under the GPL licence. We discuss its implementation and some computational issues related to secondary memory graph algorithms.