Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah A. Weighill is active.

Publication


Featured researches published by Deborah A. Weighill.


Nature plants | 2016

Transcript, protein and metabolite temporal dynamics in the CAM plant Agave

Paul E. Abraham; Hengfu Yin; Anne M. Borland; Deborah A. Weighill; Sung Don Lim; Henrique Cestari De Paoli; Nancy L. Engle; Piet C. Jones; Ryan Agh; David J. Weston; Stan D. Wullschleger; Timothy J. Tschaplinski; Dan Jacobson; John C. Cushman; Robert L. Hettich; Gerald A. Tuskan; Xiaohan Yang

Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.


Nature Communications | 2017

The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

Xiaohan Yang; Rongbin Hu; Hengfu Yin; Jerry Jenkins; Shengqiang Shu; Haibao Tang; Degao Liu; Deborah A. Weighill; Won Cheol Yim; Jungmin Ha; Karolina Heyduk; David Goodstein; Hao Bo Guo; Robert C. Moseley; Elisabeth Fitzek; Sara Jawdy; Zhihao Zhang; Meng Xie; James Hartwell; Jane Grimwood; Paul E. Abraham; Ritesh Mewalal; Juan D. Beltrán; Susanna F. Boxall; Louisa V. Dever; Kaitlin J. Palla; Rebecca L. Albion; Travis Garcia; Jesse A. Mayer; Sung Don Lim

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.Crassulacean acid metabolism (CAM) is a metabolic adaptation of photosynthesis that enhances water use efficiency. Here, via genomic analysis of Kalanchoë, the authors provide evidence for convergent evolution of protein sequence and temporal gene expression underpinning the multiple independent emergences of CAM.


Scientific Reports | 2016

Characterization of DWARF14 Genes in Populus

Kaijie Zheng; Xiaoping Wang; Deborah A. Weighill; Hao-Bo Guo; Meng Xie; Yongil Yang; Jun Yang; Shucai Wang; Dan Jacobson; Hong Guo; Wellington Muchero; Gerald A. Tuskan; Jin-Gui Chen

Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. This study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.


PLOS Computational Biology | 2015

3-way networks : application of hypergraphs for modelling increased complexity in comparative genomics

Deborah A. Weighill; Dan Jacobson

We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes.


G3: Genes, Genomes, Genetics | 2018

A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein

Anthony C. Bryan; Jin Zhang; Jianjun Guo; Priya Ranjan; Vasanth Singan; Kerrie Barry; Jeremy Schmutz; Deborah A. Weighill; Dan Jacobson; Sara Jawdy; Gerald A. Tuskan; Jin-Gui Chen; Wellington Muchero

Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington’s and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA (PtAN1) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization.


Applied and Environmental Microbiology | 2018

Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses

Laura L. Lee; Sara E. Blumer-Schuette; Javier A. Izquierdo; Jeffrey V. Zurawski; Andrew J. Loder; Jonathan M. Conway; James G. Elkins; Mircea Podar; Alicia Clum; Piet C. Jones; Marek J. Piatek; Deborah A. Weighill; Dan Jacobson; Michael W. W. Adams; Robert M. Kelly

ABSTRACT Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor. The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii. These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes. IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Archive | 2016

Network Metamodeling: Effect of Correlation Metric Choice on Phylogenomic and Transcriptomic Network Topology

Deborah A. Weighill; Dan Jacobson

We explore the use of a network meta-modeling approach to compare the effects of similarity metrics used to construct biological networks on the topology of the resulting networks. This work reviews various similarity metrics for the construction of networks and various topology measures for the characterization of resulting network topology, demonstrating the use of these metrics in the construction and comparison of phylogenomic and transcriptomic networks.


parallel computing | 2018

Parallel accelerated vector similarity calculations for genomics applications

Wayne Joubert; James Nance; Deborah A. Weighill; Dan Jacobson

The surge in availability of genomic data holds promise for enabling determination of genetic causes of observed individual traits, with applications to problems such as discovery of the genetic roots of phenotypes, be they molecular phenotypes such as gene expression or metabolite concentrations, or complex phenotypes such as diseases. However, the growing sizes of these datasets and the quadratic, cubic or higher scaling characteristics of the relevant algorithms pose a serious computational challenge necessitating use of leadership scale computing. In this paper we describe a new approach to performing vector similarity metrics calculations, suitable for parallel systems equipped with graphics processing units (GPUs) or Intel Xeon Phi processors. Our primary focus is the Proportional Similarity metric applied to Genome Wide Association Studies (GWAS) and Phenome Wide Association Studies (PheWAS). We describe the implementation of the algorithms on accelerated processors, methods used for eliminating redundant calculations due to symmetries, and techniques for efficient mapping of the calculations to many-node parallel systems. Results are presented demonstrating high per-node performance and parallel scalability with rates of more than five quadrillion elementwise comparisons achieved per second on the ORNL Titan system. In a companion paper we describe corresponding techniques applied to calculations of the Custom Correlation Coefficient for comparative genomics applications.


PLOS ONE | 2018

Defining the genetic components of callus formation: A GWAS approach

Gerald A. Tuskan; Ritesh Mewalal; Lee E. Gunter; Kaitlin J. Palla; Kelsey R. Carter; Dan Jacobson; Piet C. Jones; Benjamin J. Garcia; Deborah A. Weighill; Philip D. Hyatt; Yongil Yang; Jin Zhang; Nicholas Reis; Jin-Gui Chen; Wellington Muchero

A characteristic feature of plant cells is the ability to form callus from parenchyma cells in response to biotic and abiotic stimuli. Tissue culture propagation of recalcitrant plant species and genetic engineering for desired phenotypes typically depends on efficient in vitro callus generation. Callus formation is under genetic regulation, and consequently, a molecular understanding of this process underlies successful generation for propagation materials and/or introduction of genetic elements in experimental or industrial applications. Herein, we identified 11 genetic loci significantly associated with callus formation in Populus trichocarpa using a genome-wide association study (GWAS) approach. Eight of the 11 significant gene associations were consistent across biological replications, exceeding a chromosome-wide–log10 (p) = 4.46 [p = 3.47E−05] Bonferroni-adjusted significance threshold. These eight genes were used as hub genes in a high-resolution co-expression network analysis to gain insight into the genome-wide basis of callus formation. A network of positively and negatively co-expressed genes, including several transcription factors, was identified. As proof-of-principle, a transient protoplast assay confirmed the negative regulation of a Chloroplast Nucleoid DNA-binding-related gene (Potri.018G014800) by the LEC2 transcription factor. Many of the candidate genes and co-expressed genes were 1) linked to cell division and cell cycling in plants and 2) showed homology to tumor and cancer-related genes in humans. The GWAS approach based on a high-resolution marker set, and the ability to manipulate targets genes in vitro, provided a catalog of high-confidence genes linked to callus formation that can serve as an important resource for successful manipulation of model and non-model plant species, and likewise, suggests a robust method of discovering common homologous functions across organisms.


Frontiers in Energy Research | 2018

Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

Deborah A. Weighill; Piet C. Jones; Manesh B Shah; Priya Ranjan; Wellington Muchero; Jeremy Schmutz; Avinash Sreedasyam; David Macaya-Sanz; Robert W. Sykes; Nan Zhao; Madhavi Z. Martin; Stephen P. DiFazio; Timothy J. Tschaplinski; Gerald A. Tuskan; Dan Jacobson

Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plants sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes use of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. The resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.

Collaboration


Dive into the Deborah A. Weighill's collaboration.

Top Co-Authors

Avatar

Dan Jacobson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerald A. Tuskan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Piet C. Jones

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wellington Muchero

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jin-Gui Chen

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hengfu Yin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Nance

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Zhang

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kaitlin J. Palla

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge