Deborah Abrahams
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah Abrahams.
Journal of Immunology | 2011
Cheryl L. Day; Deborah Abrahams; Lesedi Lerumo; Esme Janse van Rensburg; Lynnett Stone; Terrence O’rie; Bernadette Pienaar; Marwou de Kock; Gilla Kaplan; Hassan Mahomed; Keertan Dheda; Willem A. Hanekom
High Ag load in chronic viral infections has been associated with impairment of Ag-specific T cell responses; however, the relationship between Ag load in chronic Mycobacterium tuberculosis infection and functional capacity of M. tuberculosis-specific T cells in humans is not clear. We compared M. tuberculosis-specific T cell-associated cytokine production and proliferative capacity in peripheral blood from adults with progressively higher mycobacterial loads—that is, persons with latent M. tuberculosis infection (LTBI), with smear-negative pulmonary tuberculosis (TB), and smear-positive TB. Patients with smear-positive TB had decreased polyfunctional IFN-γ+IL-2+TNF-α+ and IL-2–producing specific CD4 T cells and increased TNF-α single-positive cells, when compared with smear-negative TB and LTBI. TB patients also had increased frequencies of M. tuberculosis-specific CD8 T cells, compared with LTBI. M. tuberculosis-specific CD4 and CD8 T cell proliferative capacity was profoundly impaired in individuals with smear-positive TB, and correlated positively with ex vivo IFN-γ+IL-2+TNF-α+ CD4 T cells, and inversely with TNF-α single-positive CD4 T cells. During 6 mo of anti-TB treatment, specific IFN-γ+IL-2+TNF-α+ CD4 and CD8 T cells increased, whereas TNF-α and IFN-γ single-positive T cells decreased. These results suggest progressive impairment of M. tuberculosis-specific T cell responses with increasing mycobacterial load and recovery of responses during therapy. Furthermore, these data provide a link between specific cytokine-producing subsets and functional capacity of M. tuberculosis-specific T cells, and between the presence of specific CD8 T cells ex vivo and active TB disease. These data have potentially significant applications for the diagnosis of TB and for the identification of T cell correlates of TB disease progression.
The Lancet | 2016
Adam Penn-Nicholson; Thomas J. Scriba; Ethan Thompson; Sara Suliman; Lynn M. Amon; Hassan Mahomed; Mzwandile Erasmus; Wendy Whatney; Gregory D. Hussey; Deborah Abrahams; Fazlin Kafaar; Tony Hawkridge; Suzanne Verver; E. Jane Hughes; Martin O. C. Ota; Jayne S. Sutherland; Rawleigh Howe; Hazel M. Dockrell; W. Henry Boom; Bonnie Thiel; Tom H. M. Ottenhoff; Harriet Mayanja-Kizza; Amelia C. Crampin; Katrina Downing; Mark Hatherill; Joe Valvo; Smitha Shankar; Shreemanta K. Parida; Stefan H. E. Kaufmann; Gerhard Walzl
BACKGROUND Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. METHODS In this prospective cohort study, we followed up healthy, South African adolescents aged 12-18 years from the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex quantitative real-time PCR (qRT-PCR), the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. Participants of the independent cohorts were household contacts of adults with active pulmonary tuberculosis disease. FINDINGS Between July 6, 2005, and April 23, 2007, we enrolled 6363 participants from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2-68·9) and a specificity of 80·6% (79·2-82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6-64·3) and a specificity of 82·8% (76·7-86) in the 12 months preceding tuberculosis. INTERPRETATION The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. FUNDING Bill & Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union, and the South African Medical Research Council.Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation The whole blood tuberculosis risk signature prospectively identified persons at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Funding Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text).
PLOS ONE | 2011
Hassan Mahomed; Tony Hawkridge; Suzanne Verver; Deborah Abrahams; Lawrence Geiter; Mark Hatherill; Rodney Ehrlich; Willem A. Hanekom; Gregory D. Hussey
Setting This study was conducted in a high tuberculosis (TB) burden area in Worcester, South Africa, with a notified all TB incidence rate of 1,400/100,000. Main Objective To compare the predictive value of a baseline tuberculin skin test (TST) with that of the QuantiFERON TB Gold (In-tube) assay (QFT) for subsequent microbiologically confirmed TB disease among adolescents. Methods Adolescents aged 12–18 years were recruited from high schools in the study area. At baseline, blood was drawn for QFT and a TST administered. Participants were followed up for up to 3.8 years for incident TB disease (median 2.4 years). Results After exclusions, 5244 (82.4%) of 6,363 adolescents enrolled, were analysed. The TB incidence rate was 0.60 cases per 100 person years (pyrs) (95% CI 0.43–0.82) for baseline TST positive (≥5 mm) participants and 0.64 cases per 100 pyrs (95% CI 0.45–0.87) for baseline QFT positive participants. TB incidence rates were 0.22 per 100 pyrs (0.11–0.39) and 0.22 per 100 pyrs (0.12–0.38) among those with a negative baseline TST and QFT respectively. Sensitivity for incident TB disease was 76.9% for TST and 75.0% for QFT (p = 0.81). Positive predictive value was 1.4% for TST and 1.5% for QFT. Conclusion Positive TST and QFT tests were moderately sensitive predictors of progression to microbiologically confirmed TB disease. There was no significant difference in the predictive ability of these tests for TB disease amongst adolescents in this high burden setting. Therefore, these findings do not support use of QFT in preference to TST to predict the risk of TB disease in this study population.
PLOS ONE | 2013
Hassan Mahomed; Rodney Ehrlich; Tony Hawkridge; Mark Hatherill; Lawrence Geiter; Fazlin Kafaar; Deborah Abrahams; Humphrey Mulenga; Michele Tameris; Hennie Geldenhuys; Willem A. Hanekom; Suzanne Verver; Gregory D. Hussey
Background Tuberculosis (TB) is a major public health problem globally. Little is known about TB incidence in adolescents who are a proposed target group for new TB vaccines. We conducted a study to determine the TB incidence rates and risk factors for TB disease in a cohort of school-going adolescents in a high TB burden area in South Africa. Methods We recruited adolescents aged 12 to 18 years from high schools in Worcester, South Africa. Demographic and clinical information was collected, a tuberculin skin test (TST) performed and blood drawn for a QuantiFERON TB Gold assay at baseline. Screening for TB cases occurred at follow up visits and by surveillance of registers at public sector TB clinics over a period of up to 3.8 years after enrolment. Results A total of 6,363 adolescents were enrolled (58% of the school population targeted). During follow up, 67 cases of bacteriologically confirmed TB were detected giving an overall incidence rate of 0.45 per 100 person years (95% confidence interval 0.29–0.72). Black or mixed race, maternal education of primary school or less or unknown, a positive baseline QuantiFERON assay and a positive baseline TST were significant predictors of TB disease on adjusted analysis. Conclusion The adolescent TB incidence found in a high burden setting will help TB vaccine developers plan clinical trials in this population. Latent TB infection and low socio-economic status were predictors of TB disease.
PLOS ONE | 2014
Cheryl L. Day; Noella D. Moshi; Deborah Abrahams; Michele van Rooyen; Terrence O'rie; Marwou de Kock; Willem A. Hanekom
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.
American Journal of Respiratory and Critical Care Medicine | 2017
Elisa Nemes; Virginie Rozot; Hennie Geldenhuys; Nicole Bilek; Simbarashe Mabwe; Deborah Abrahams; Lebohang Makhethe; Mzwandile Erasmus; Alana Keyser; Asma Toefy; Yolundi Cloete; Frances Ratangee; Thomas Blauenfeldt; Morten Ruhwald; Gerhard Walzl; Bronwyn Smith; Andre G. Loxton; Willem A. Hanekom; Jason R. Andrews; Maria D. Lempicki; Ruth D. Ellis; Ann M. Ginsberg; Mark Hatherill; Thomas J. Scriba
Rationale: Conversion from a negative to positive QuantiFERON‐TB test is indicative of Mycobacterium tuberculosis (Mtb) infection, which predisposes individuals to tuberculosis disease. Interpretation of serial tests is confounded by immunological and technical variability. Objectives: To improve the consistency of serial QuantiFERON‐TB testing algorithms and provide a data‐driven definition of conversion. Methods: Sources of QuantiFERON‐TB variability were assessed, and optimal procedures were identified. Distributions of IFN‐&ggr; response levels were analyzed in healthy adolescents, Mtb‐unexposed control subjects, and patients with pulmonary tuberculosis. Measurements and Main Results: Individuals with no known Mtb exposure had IFN‐&ggr; values less than 0.2 IU/ml. Among individuals with IFN‐&ggr; values less than 0.2 IU/ml, 0.2‐0.34 IU/ml, 0.35‐0.7 IU/ml, and greater than 0.7 IU/ml, tuberculin skin test positivity results were 15%, 53%, 66%, and 91% (P < 0.005), respectively. Together, these findings suggest that values less than 0.2 IU/ml were true negatives. In short‐term serial testing, “uncertain” conversions, with at least one value within the uncertainty zone (0.2‐0.7 IU/ml), were partly explained by technical assay variability. Individuals who had a change in QuantiFERON‐TB IFN‐&ggr; values from less than 0.2 to greater than 0.7 IU/ml had 10‐fold higher tuberculosis incidence rates than those who maintained values less than 0.2 IU/ml over 2 years (P = 0.0003). By contrast, “uncertain” converters were not at higher risk than nonconverters (P = 0.229). Eighty‐seven percent of patients with active tuberculosis had IFN‐&ggr; values greater than 0.7 IU/ml, suggesting that these values are consistent with established Mtb infection. Conclusions: Implementation of optimized procedures and a more rigorous QuantiFERON‐TB conversion definition (an increase from IFN‐&ggr; <0.2 to >0.7 IU/ml) would allow more definitive detection of recent Mtb infection and potentially improve identification of those more likely to develop disease.
Tuberculosis | 2013
Hassan Mahomed; Rodney Ehrlich; Tony Hawkridge; Mark Hatherill; Lawrence Geiter; Fazlin Kafaar; Deborah Abrahams; Humphrey Mulenga; Michele Tameris; Hennie Geldenhuys; Willem A. Hanekom; Suzanne Verver; Gregory D. Hussey
Screening for tuberculosis (TB) disease is important for TB control and TB vaccine efficacy trials but this has not been evaluated in adolescents. We conducted a study to determine the prevalence of active TB and performance of specific screening tests for TB in adolescents in a high burden setting. Adolescents aged 12-18 years were recruited from high schools in a rural town in South Africa. Participants were screened for active TB using symptoms, household TB contact, positive interferon gamma release assay (IGRA) and positive tuberculin skin test (TST). Of 6363 adolescents recruited, 21 were newly diagnosed with TB of whom 19 were culture positive. After exclusions, the derived prevalence of smear positive TB was 16/5682 = 3/1000 (95% confidence interval (CI) 1-4/1000). The sensitivity of TST and IGRA for active TB were 85% (95% CI 62-100%) and 94% (95% CI 79-100%) respectively. None of the methods alone or in combination had positive predictive values greater than 2%. The screening tools evaluated in this study may not be practical for routine use owing to low positive predictive values but may be useful in TB vaccine clinical trials.
Vaccine | 2017
Helen Mearns; Hennie Geldenhuys; Benjamin M. Kagina; Munyaradzi Musvosvi; Francesca Little; Frances Ratangee; Hassan Mahomed; Willem A. Hanekom; Søren T. Hoff; Morten Ruhwald; Ingrid Kromann; Peter Bang; Mark Hatherill; Peter Andersen; Thomas J. Scriba; Virginie Rozot; Deborah Abrahams; Katya Mauff; Erica Smit; Yolande Brown; E. Jane Hughes; Edward Makgotlho; Alana Keyser; Mzwandile Erasmus; Lebohang Makhethe; Hadn Africa; Charles Hopley; Marcia Steyn
BACKGROUND Control of the tuberculosis epidemic requires a novel vaccine that is effective in preventing tuberculosis in adolescents, a key target population for vaccination against TB. METHODS Healthy adolescents, stratified by M. tuberculosis-infection status, were enrolled into this observer-blinded phase II clinical trial of the protein-subunit vaccine candidate, H1:IC31, comprising a fusion protein (H1) of Ag85B and ESAT-6, formulated with the IC31 adjuvant. Local and systemic adverse events and induced T cell responses were measured after one or two administrations of either 15μg or 50μg of the H1 protein. RESULTS Two hundred and forty participants were recruited and followed up for 224days. No notable safety events were observed regardless of H1 dose or vaccination schedule. H1:IC31 vaccination induced antigen-specific CD4 T cells, co-expressing IFN-γ, TNF-α and/or IL-2. H1:IC31 vaccination of M.tb-uninfected individuals preferentially drove the emergence of Ag85B and ESAT-6 specific TNF-α+IL-2+CD4 T cells, while H1:IC31 vaccination of M.tb-infected individuals resulted in the expansion of Ag85B-specific but not ESAT-6-specific TNF-α+IL-2+CD4 T cells. CONCLUSIONS H1:IC31 was safe and immunogenic in uninfected and M.tb-infected adolescents. Two administrations of the 15μg H1:IC31 dose induced the greatest magnitude immune response, and was considered optimal (South African National Clinical Trials Register, DoH-27-0612-3947; Pan African Clinical Trial Registry, PACTR201403000464306).
Journal of Immunology | 2017
Cheryl L. Day; Deborah Abrahams; Levelle Harris; Michele van Rooyen; Lynnett Stone; Marwou de Kock; Willem A. Hanekom
Coinfection with HIV is the single greatest risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease. HIV-associated dysregulation of adaptive immunity by depletion of CD4 Th cells most likely contributes to loss of immune control of LTBI in HIV-infected individuals, although the precise mechanisms whereby HIV infection impedes successful T cell–mediated control of M. tuberculosis have not been well defined. To further delineate mechanisms whereby HIV impairs protective immunity to M. tuberculosis, we evaluated the frequency, phenotype, and functional capacity of M. tuberculosis-specific CD4 T cells in HIV-infected and HIV-uninfected adults with LTBI. HIV infection was associated with a lower total frequency of cytokine-producing M. tuberculosis-specific CD4 T cells, and preferential depletion of a discrete subset of M. tuberculosis-specific IFN-γ+IL-2−TNF-α+ CD4 T cells. M. tuberculosis-specific CD4 T cells in HIV-infected individuals expressed significantly higher levels of Ki67, compared with HIV-uninfected individuals, thus indicating recent activation and turnover of these cells in vivo. The ex vivo proliferative capacity of M. tuberculosis-specific CD4 T cells was markedly impaired in HIV-infected individuals, compared with HIV-uninfected individuals. Moreover, HIV infection was associated with increased M. tuberculosis Ag-induced CD4 T cell death ex vivo, indicating a possible mechanism contributing to impaired proliferative capacity of M. tuberculosis-specific CD4 T cells in HIV-infected individuals. These data provide new insights into the parameters of M. tuberculosis-specific CD4 T cell immunity that are impaired in HIV-infected individuals with LTBI, which may contribute to their increased risk of developing active tuberculosis disease.
Frontiers in Immunology | 2018
Cheryl L. Day; Deborah Abrahams; Rubina Bunjun; Lynnett Stone; Marwou de Kock; Gerhard Walzl; Robert J. Wilkinson; Wendy A. Burgers; Willem A. Hanekom
Persistent antigen stimulation in chronic infections has been associated with antigen-specific T cell dysfunction and upregulation of inhibitory receptors, including programmed cell death protein 1 (PD-1). Pulmonary tuberculosis (TB) disease is characterized by high levels of Mycobacterium tuberculosis (Mtb), yet the relationship between bacterial load, PD-1 expression, and Mtb-specific T cell function in human TB has not been well-defined. Using peripheral blood samples from adults with LTBI and with pulmonary TB disease, we tested the hypothesis that PD-1 expression is associated with bacterial load and functional capacity of Mtb-specific T cell responses. We found that PD-1 was expressed at significantly higher levels on Th1 cytokine-producing Mtb-specific CD4 T cells from patients with smear-positive TB, compared with smear-negative TB and LTBI, which decreased after completion of anti-TB treatment. By contrast, expression of PD-1 on Mtb-specific CD8 T cells was significantly lower than on Mtb-specific CD4 T cells and did not differ by Mtb infection and disease status. In vitro stimulation of PBMC with Mtb antigens demonstrated that PD-1 is induced on proliferating Mtb-specific CD4 T cells and that Th1 cytokine production capacity is preferentially maintained within PD-1+ proliferating CD4 T cells, compared with proliferating Mtb-specific CD4 T cells that lack PD-1 expression. Together, these data indicate that expression of PD-1 on Mtb-specific CD4 T cells is indicative of mycobacterial antigen exposure and identifies a population of effector cells with Th1 cytokine production capacity. These studies provide novel insights into the role of the PD-1 pathway in regulating CD4 and CD8 T cell responses in Mtb infection and provide rationale for future studies to evaluate PD-1 expression on antigen-specific CD4 T cells as a potential biomarker for bacterial load and treatment response in human TB.