Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah B. Dehart is active.

Publication


Featured researches published by Deborah B. Dehart.


Alcoholism: Clinical and Experimental Research | 2009

Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 7.

Scott E. Parnell; Shonagh K. O’Leary-Moore; Elizabeth A. Godin; Deborah B. Dehart; Brice W. Johnson; G. Allan Johnson; Martin Styner; Kathleen K. Sulik

BACKGROUND Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanols insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. METHODS For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouins/Prohance solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 x 512 x 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 microm (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. RESULTS As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. CONCLUSIONS This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages.


International Journal of Developmental Neuroscience | 1984

Brain malformations in prenatal mice following acute maternal ethanol administration.

Kathleen K. Sulik; Jean M. Lauder; Deborah B. Dehart

Acute maternal ethanol administration (two i.p. injections of 2.9 g ethanol/kg maternal body wt) to C57B1/6J mice during gastrulation stages of embryogenesis (gestational day 7) induces a spectrum of brain and facial malformations characteristic of those seen in the human Fetal Alcohol Syndrome. Scanning electron microscopic and light microscopic analyses of the brains of embryos of gestational days 11–14 demonstrate ventro‐medial forebrain deficiencies of varying degrees of severity in affected specimens. Even at the mild end of the spectrum, reductions in the size of the septal nuclei and the shape of the third ventricle are observed. As the severity of the effect increases, the septal nuclei disappear altogether, resulting in midline fusion of the corpora striata (basal ganglia). In such cases, the third ventricle is totally absent anteriorly (preoptic area) and significantly narrowed at more posterior levels, adjacent to the ventromedial nuclei. In addition, the hippocampal primordium is absent at levels which include the corpora striata, and septation of the cerebral cortex is incomplete. More posteriorly, at the level of the posterior commissure, the hippocampal primordium is present, but greatly reduced in size, and the entire brain is distinctly narrower in width. Still further posteriorly, at levels of the metencephalon which include the tectum and cerebellar plate, the cerebral aqueduct is significantly expanded, fusion of midline (raphe) structures is incomplete and the cerebellar plate does not extend as far medially as it does normally. Interestingly, these abnormalities are analogous to those observed in the holoprosencephaly series of malformations.


American Journal of Medical Genetics | 1997

Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: Further evidence for a link to sonic hedgehog

Louise Lanoue; Deborah B. Dehart; Myron E. Hinsdale; Nobuyo Maeda; G. Stephen Tint; Kathleen K. Sulik

Low cholesterol levels produced by treating cholesterol deficient mutant mice with a cholesterol synthesis inhibitor (BM 15.766) between days 4 to 7 of pregnancy resulted in malformations consistent with those in the Smith-Lemli-Opitz syndrome (SLOS). Facial anomalies in mildly affected gestational day 12 mouse embryos included a small nose and long upper lip; in more severely affected embryos, the facial and forebrain anomalies are representative of holoprosencephaly. Additionally, abnormalities of the mid- and hind-brain were observed and included stenosis of the cerebral aqueduct at the level of the isthmus and apparent absence of the organ progenitor for the cerebellar vermis. Although not previously directly linked to cholesterol deficiency in experimental animals, limb and external genital defects were a notable outcome in this multifactorially-based cholesterol deficiency model. The results of this study provide new evidence supporting an important role for cholesterol in early embryonic development, provide additional support for the hypothesis that this role may involve the function of specific gene products, such as sonic hedgehog (shh) signaling protein, and provide a description of the pathogenesis of some of the characteristic malformations in SLOS.


PLOS ONE | 2012

Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent.

Robert J. Lipinski; Peter Hammond; Shonagh K. O'Leary-Moore; Jacob J. Ament; S J Pecevich; Yong-hui Jiang; Francois Budin; Scott E. Parnell; M Suttie; Elizabeth A. Godin; Joshua L. Everson; Deborah B. Dehart; Ipek Oguz; Hunter T. Holloway; Martin Styner; G A Johnson; Kathleen K. Sulik

Prenatal ethanol exposure is the leading preventable cause of congenital mental disability. Whereas a diagnosis of fetal alcohol syndrome (FAS) requires identification of a specific pattern of craniofacial dysmorphology, most individuals with behavioral and neurological sequelae of heavy prenatal ethanol exposure do not exhibit these defining facial characteristics. Here, a novel integration of MRI and dense surface modeling-based shape analysis was applied to characterize concurrent face-brain phenotypes in C57Bl/6J fetuses exposed to ethanol on gestational day (GD)7 or GD8.5. The facial phenotype resulting from ethanol exposure depended upon stage of insult and was predictive of unique patterns of corresponding brain abnormalities. Ethanol exposure on GD7 produced a constellation of dysmorphic facial features characteristic of human FAS, including severe midfacial hypoplasia, shortening of the palpebral fissures, an elongated upper lip, and deficient philtrum. In contrast, ethanol exposure on GD8.5 caused mild midfacial hypoplasia and palpebral fissure shortening, a shortened upper lip, and a preserved philtrum. These distinct, stage-specific facial phenotypes were associated with unique volumetric and shape abnormalities of the septal region, pituitary, and olfactory bulbs. By demonstrating that early prenatal ethanol exposure can cause more than one temporally-specific pattern of defects, these findings illustrate the need for an expansion of current diagnostic criteria to better capture the full range of facial and brain dysmorphology in fetal alcohol spectrum disorders.


The FASEB Journal | 2004

Protection from ethanol-induced limb malformations by the superoxide dismutase/catalase mimetic, EUK-134

Shao Yu Chen; Deborah B. Dehart; Kathleen K. Sulik

Based on previous in vitro studies that have illustrated prevention of ethanol‐induced cell death by antioxidants, using an in vivo model, we have tested the anti‐teratogenic potential of a potent synthetic superoxide dismutase plus catalase mimetic, EUK‐134. The developing limb of C57BL/6J mice, which is sensitive to ethanol‐induced reduction defects, served as the model system. On their ninth day of pregnancy, C57BL/6J mice were administered ethanol (two intraperitoneal doses of 2.9 g/kg given 4 h apart) alone or in combination with EUK‐134 (two doses of 10 mg/kg). Pregnant control mice were similarly treated with either vehicle or EUK‐ 134, alone. Within 15 h of the initial ethanol exposure, excessive apoptotic cell death was observed in the apical ectodermal ridge (AER) of the newly forming forelimb buds. Forelimb defects, including postaxial ectrodactyly, metacarpal, and ulnar deficiencies, occurred in 67.3% of the ethanol‐exposed fetuses that were examined at 18 days of gestation. The right forelimbs were preferentially affected. No limb malformations were observed in control fetuses. Cell death in the AER of embryos concurrently exposed to ethanol and EUK‐134 was notably reduced compared with that in embryos from ethanol‐treated dams. Additionally, the antioxidant treatment reduced the incidence of forelimb malformations to 35.9%. This work illustrates that antioxidants can significantly improve the adverse developmental outcome that results from ethanol exposure in utero, diminishing the incidence and severity of major malformations that result from exposure to this important human teratogen.


International Journal of Developmental Neuroscience | 2003

Abnormal serotonergic development in a mouse model for the Smith-Lemli-Opitz syndrome: implications for autism

H. Waage-Baudet; Jean M. Lauder; Deborah B. Dehart; Kimberly D. Kluckman; Sylvia Hiller; G.S Tint; Kathleen K. Sulik

The Smith–Lemli–Opitz syndrome (SLOS) is a malformation/mental retardation syndrome resulting from an inborn error in 3β‐hydroxysteroid Δ7‐reductase (DHCR7), the terminal enzyme required for cholesterol biosynthesis. Using a targeting strategy designed to virtually eliminate Dhcr7 activity, we have created a SLOS mouse model that exhibits commissural deficiencies, hippocampal abnormalities, and hypermorphic development of serotonin (5‐HT) neurons. The latter is of particular interest with respect to current evidence that serotonin plays a significant role in autism spectrum disorders and the recent clinical observation that 50% of SLOS patients present with autistic behavior. Immunohistochemical analyses have revealed a 306% increase in the area of 5‐HT immunoreactivity (5‐HT IR) in the hindbrains of mutant (Dhcr7−/−) mice as compared to age‐matched wild type animals. Amount of 5‐HT IR was measured as total area of IR per histological section. Additionally, a regional increase as high as 15‐fold was observed for the most lateral sagittal hindbrain sections. In Dhcr7−/− mice, an expansion of 5‐HT IR into the ventricular zone and floor plate region was observed. In addition, the rostral and caudal raphe groups exhibited a radial expansion in Dhcr7−/− mice, with 5‐HT IR cells present in locations not seen in wild type mice. This increase in 5‐HT IR appears to represent an increase in total number of 5‐HT neurons and fibers. These observations may help explain the behavioral phenotype seen in SLOS, and provide clues for future therapeutic interventions that utilize pharmacological modulation of the serotonergic system.


American Journal of Medical Genetics | 1997

Pathogenesis of malformations in a rodent model for Smith‐Lemli‐Opitz syndrome

Deborah B. Dehart; Louise Lanoue; G. S. Tint; Kathleen K. Sulik

The fact that Smith-Lemli-Opitz syndrome (SLOS), a syndrome comprising major malformations involving a number of organ systems, results from an abnormality in cholesterol biosynthesis, was discovered only recently. Utilizing a drug (BM 15.766) to inhibit the same step in cholesterol biosynthesis as is abnormal in those affected with SLOS, we have developed a rat model that presents with abnormalities observed as early as gestational day 12 that appear to be consistent with some of those subsequent malformations that comprise the human syndrome. Abnormalities of the brain and face include deficiency in the midline region of the upper face, narrowing of the forebrain hemispheres and of the cerebral aqueduct, and deficiency in the developing lower jaw. Associated pathogenesis, as observed on gestational day 11 in histological sections and with scanning electron microscopy, involves abnormal cell populations at the rim of the developing forebrain and in the alar plate of the lower midbrain and hind-brain. The affected cells appear abnormally rounded up, having apparently lost their normal cell contacts. The potential basis for the selective vulnerability of this cell population and the impact of its vulnerability relative to subsequent dysmorphogenesis is discussed.


Birth Defects Research Part A-clinical and Molecular Teratology | 2010

Magnetic resonance microscopy‐based analyses of the brains of normal and ethanol‐exposed fetal mice

Shonagh K. O'Leary-Moore; Scott E. Parnell; Elizabeth A. Godin; Deborah B. Dehart; Jacob J. Ament; Amber A. Khan; G. Allan Johnson; Martin Styner; Kathleen K. Sulik

BACKGROUND The application of magnetic resonance microscopy (MRM) to the study of normal and abnormal prenatal mouse development has facilitated discovery of dysmorphology following prenatal ethanol insult. The current analyses extend this work, providing a regional brain volume-based description of normal brain growth and illustrating the consequences of gestational day (GD) 10 ethanol exposure in the fetal mouse. METHODS To assess normal growth, control C57Bl/6J fetuses collected on GD 16, GD 16.5, and GD 17 were scanned using a 9.4-T magnet, resulting in 29-μm isotropic resolution images. For the ethanol teratogenicity studies, C57Bl/6J dams were administered intraperitoneal ethanol (2.9 g/kg) at 10 days, 0 hr, and 10 days, 4 hr, after fertilization, and fetuses were collected for analyses on GD 17. From individual MRM scans, linear measurements and regional brain volumes were determined and compared. RESULTS In control fetuses, each of the assessed brain regions increased in volume, whereas ventricular volumes decreased between GD 16 and GD 17. Illustrating a global developmental delay, prenatal ethanol exposure resulted in reduced body volumes, crown-rump lengths, and a generalized decrease in regional brain volumes compared with GD 17 controls. However, compared with GD 16.5, morphologically matched controls, ethanol exposure resulted in volume increases in the lateral and third ventricles as well as a disproportionate reduction in cortical volume. CONCLUSIONS The normative data collected in this study facilitate the distinction between GD 10 ethanol-induced developmental delay and frank dysmorphology. This work illustrates the utility of MRM-based analyses for developmental toxicology studies and extends our knowledge of the stage-dependency of ethanol teratogenesis.


Developmental Neuroscience | 2005

Immunohistochemical and Microarray Analyses of a Mouse Model for the Smith-Lemli-Opitz Syndrome

H. Waage-Baudet; W.C. Dunty; Deborah B. Dehart; Sylvia Hiller; Kathleen K. Sulik

The Smith-Lemli-Opitz syndrome is a mental retardation/malformation syndrome with behavioral components of autism. It is caused by a deficiency in 3β-hydroxysteroid-Δ7-reductase (DHCR7), the enzyme required for the terminal enzymatic step of cholesterol biosynthesis. The availability of Smith-Lemli-Opitz syndrome mouse models has made it possible to investigate the genesis of the malformations associated with this syndrome. Dhcr7 gene modification (Dhcr7–/–) results in neonatal lethality and multiple organ system malformations. Pathology includes cleft palate, pulmonary hypoplasia, cyanosis, impaired cortical response to glutamate, and hypermorphic development of hindbrain serotonergic neurons. For the current study, hindbrain regions microdissected from gestational day 14 Dhcr7–/–, Dhcr7+/– and Dhcr7+/+ fetuses were processed for expression profiling analyses using Affymetrix oligonucleotide arrays and filtered using statistical significance (S-score) of change in gene expression. Of the 12,000 genes analyzed, 91 were upregulated and 98 were downregulated in the Dhcr7–/– hindbrains when compared to wild-type animals. Fewer affected genes, representing a reduced affect on these pathways, were identified in heterozygous animals. Hierarchical clustering identified altered expression of genes associated with cholesterol homeostasis, cell cycle control and apoptosis, neurodifferentiation and embryogenesis, transcription and translation, cellular transport, neurodegeneration, and neuronal cytoskeleton. Of particular interest, Dhcr7 gene modification elicited dynamic changes in genes involved in axonal guidance. In support of the microarray findings, immunohistochemical analyses of the netrin/deleted in colorectal cancer axon guidance pathway illustrated midline commissural deficiencies and hippocampal pathfinding errors in Dhcr7–/– mice. The results of these studies aid in providing insight into the genesis of human cholesterol-related birth defects and neurodevelopmental disorders and highlight specific areas for future investigation.


Neurotoxicology and Teratology | 2011

Ventromedian forebrain dysgenesis follows early prenatal ethanol exposure in mice

Elizabeth A. Godin; Deborah B. Dehart; Scott E. Parnell; Shonagh K. O'Leary-Moore; Kathleen K. Sulik

Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanols teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9g/kg ethanol or saline twice, at a 4h interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGEs) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.

Collaboration


Dive into the Deborah B. Dehart's collaboration.

Top Co-Authors

Avatar

Kathleen K. Sulik

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Scott E. Parnell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shao Yu Chen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Godin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Martin Styner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shonagh K. O'Leary-Moore

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clyde W. Hodge

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Francois Budin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

H. Waage-Baudet

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge