Deborah E. Dobson
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah E. Dobson.
Science | 2009
Natalia S. Akopyants; Nicola Kimblin; Nagila Secundino; Rachel Patrick; Nathan C. Peters; Phillip G. Lawyer; Deborah E. Dobson; Stephen M. Beverley; David L. Sacks
Genetic exchange has not been shown to be a mechanism underlying the extensive diversity of Leishmania parasites. We report here evidence that the invertebrate stages of Leishmania are capable of having a sexual cycle consistent with a meiotic process like that described for African trypanosomes. Hybrid progeny were generated that bore full genomic complements from both parents, but kinetoplast DNA maxicircles from one parent. Mating occurred only in the sand fly vector, and hybrids were transmitted to the mammalian host by sand fly bite. Genetic exchange likely contributes to phenotypic diversity in natural populations, and analysis of hybrid progeny will be useful for positional cloning of the genes controlling traits such as virulence, tissue tropism, and drug resistance.
Cell | 1990
Deborah E. Dobson; Arbetta M. Kambe; Eric Block; Teresa Dion; Henry Lu; John J. Castellot; Bruce M. Spiegelman
Differentiation of adipocytes is accompanied by secretion of molecules stimulating angiogenesis in vivo and endothelial cell growth and motility in vitro. We demonstrate that the angiogenic and motility-stimulating activities secreted by adipocytes are separable from the endothelial cell mitogenic activity by fractionation of adipocyte-conditioned medium. The major differentiation-dependent angiogenic molecule was purified and identified by GCMS as 1-butyryl-glycerol (monobutyrin). Monobutyrin levels increase at least 200-fold during adipocyte differentiation and represent a major fraction of the total angiogenic activity. Synthetic monobutyrin shows the same spectrum of biological activities as the adipocyte-derived factor: stimulation of angiogenesis in vivo and microvascular endothelial cell motility in vitro, with no effect on endothelial cell proliferation. Angiogenesis is stimulated at doses as low as 20 pg when tested in the chick chorioallantoic membrane assay. These results strongly suggest that monobutyrin is a key regulatory molecule in an angiogenic process linked to normal cellular and tissue development.
Journal of the American Geriatrics Society | 1997
James L. Kirkland; Deborah E. Dobson
OBJECTIVE: To review recent findings about changes with age in the replication and differentiation of preadipocytes, the progenitor cells in fat tissue that are capable of differentiating into fat cells, and to examine possible links between these alterations and age‐related changes in fat tissue function.
Journal of Biological Chemistry | 2007
Althea A. Capul; Tamara Barron; Deborah E. Dobson; Salvatore J. Turco; Stephen M. Beverley
In the protozoan parasite Leishmania, abundant surface and secreted molecules, such as lipophosphoglycan (LPG) and proteophosphoglycans (PPGs), contain extensive galactose in the form of phosphoglycans (PGs) based on (Gal-Man-PO4) repeating units. PGs are synthesized in the parasite Golgi apparatus and require transport of cytoplasmic nucleotide sugar precursors to the Golgi lumen by nucleotide sugar transporters (NSTs). GDP-Man transport is mediated by the LPG2 gene product, and here we focused on transporters for UDP-Gal. Data base mining revealed 12 candidate NST genes in the L. major genome, including LPG2 as well as a candidate endoplasmic reticulum UDP-glucose transporter (HUT1L) and several pseudogenes. Gene knock-out studies established that two genes (LPG5A and LPG5B) encoded UDP-Gal NSTs. Although the single lpg5A– and lpg5B– mutants produced PGs, an lpg5A–/5B– double mutant was completely deficient. PG synthesis was restored in the lpg5A–/5B– mutant by heterologous expression of the human UDP-Gal transporter, and heterologous expression of LPG5A and LPG5B rescued the glycosylation defects of the mammalian Lec8 mutant, which is deficient in UDP-Gal uptake. Interestingly, the LPG5A and LPG5B functions overlap but are not equivalent, since the lpg5A– mutant showed a partial defect in LPG but not PPG phosphoglycosylation, whereas the lpg5B– mutant showed a partial defect in PPG but not LPG phosphoglycosylation. Identification of these key NSTs in Leishmania will facilitate the dissection of glycoconjugate synthesis and its role(s) in the parasite life cycle and further our understanding of NSTs generally.
PLOS Genetics | 2013
Ehud Inbar; Natalia S. Akopyants; Mélanie Charmoy; Audrey Romano; Phillip G. Lawyer; Dia-Eldin Elnaiem; Florence Kauffmann; Mourad Barhoumi; Michael E. Grigg; Katherine L. Owens; Michael P. Fay; Deborah E. Dobson; Jahangheer S. Shaik; Stephen M. Beverley; David L. Sacks
Invertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural (Phlebotomus duboscqi) and unnatural (Lutzomyia longipalpis) sand fly vectors. Following co-infection of flies with parental lines bearing independent drug markers, doubly-drug resistant hybrid progeny were selected, from which 96 clonal lines were analyzed for DNA content and genotyped for parent alleles at 4–6 unlinked nuclear loci as well as the maxicircle DNA. As seen previously, the majority of hybrids showed ‘2n’ DNA contents, but with a significant number of ‘3n’ and one ‘4n’ offspring. In the natural vector, 97% of the nuclear loci showed both parental alleles; however, 3% (4/150) showed only one parental allele. In the unnatural vector, the frequency of uniparental inheritance rose to 10% (27/275). We attribute this to loss of heterozygosity after mating, most likely arising from aneuploidy which is both common and temporally variable in Leishmania. As seen previously, only uniparental inheritance of maxicircle kDNA was observed. Hybrids were recovered at similar efficiencies in all pairwise crosses tested, suggesting that L. major lacks detectable ‘mating types’ that limit free genetic exchange. In the natural vector, comparisons of the timing of hybrid formation with the presence of developmental stages suggest nectomonads as the most likely sexually competent stage, with hybrids emerging well before the first appearance of metacyclic promastigotes. These studies provide an important perspective on the prevalence of genetic exchange in natural populations of L. major and a guide for experimental studies to understand the biology of mating.
The Journal of Infectious Diseases | 2016
Vanessa Adaui; Lon Fye Lye; Natalia S. Akopyants; Mirko Zimic; Alejandro Llanos-Cuentas; Lineth Garcia; Ilse Maes; Simonne De Doncker; Deborah E. Dobson; Jorge Arevalo; Jean-Claude Dujardin; Stephen M. Beverley
Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [Sb(V)]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis-infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription-polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic Sb(V) resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis.
PLOS Neglected Tropical Diseases | 2014
Haroun Zangger; Asrat Hailu; Chantal Desponds; Lon-Fye Lye; Natalia S. Akopyants; Deborah E. Dobson; Catherine Ronet; Hashim Ghalib; Stephen M. Beverley; Nicolas Fasel
Background Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica. Methodology/Principal Findings A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique −1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1. Conclusions/Significance In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.
PLOS Pathogens | 2010
Deborah E. Dobson; Shaden Kamhawi; Phillip G. Lawyer; Salvatore J. Turco; Stephen M. Beverley; David L. Sacks
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Audrey Romano; Ehud Inbar; Alain Debrabant; Mélanie Charmoy; Phillip G. Lawyer; Flávia L. Ribeiro-Gomes; Mourad Barhoumi; Michael E. Grigg; Jahangheer S. Shaik; Deborah E. Dobson; Stephen M. Beverley; David L. Sacks
Significance Protozoan parasites of the genus Leishmania are transmitted by sand flies and produce diseases in humans ranging from localized cutaneous lesions to fatal visceral infection. Although these clinical outcomes have clear parasite species associations, the genes controlling these differences are not known. We provide, to our knowledge, the first experimental demonstration of genetic exchange in the sand fly vector between different Leishmania species: a cutaneous strain of Leishmania major and a visceral strain of Leishmania infantum. Eleven full genomic hybrids were generated that displayed differences in their ability to grow in the skin or viscera of mice, indicating that the genes controlling these traits may be polymorphic within the parental species and are potentially amenable to identification by classical linkage analysis. Genetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies. Eleven double–drug-resistant progeny clones, each the product of an independent mating event, were generated and submitted to genotype and phenotype analyses. The analysis of multiple allelic markers across the genome suggested that each progeny clone inherited at least one full set of chromosomes from each parent, with loss of heterozygosity at some loci, and uniparental retention of maxicircle kinetoplast DNA. Hybrids with DNA contents of approximately 2n, 3n, and 4n were observed. In vivo studies revealed clear differences in the ability of the hybrids to produce pathology in the skin or to disseminate to and grow in the viscera, suggesting polymorphisms and differential inheritance of the gene(s) controlling these traits. The studies, to our knowledge, represent the first experimental confirmation of cross-species mating in Leishmania, opening the way toward genetic linkage analysis of important traits and providing strong evidence that genetic exchange is responsible for the generation of the mixed-species genotypes observed in natural populations.
Recent Progress in Hormone Research | 1983
Gordon M. Ringold; Deborah E. Dobson; J. Russell Grove; Carol V. Hall; Frank Lee; James L. Vannice
Publisher Summary Glucocorticoids—as well as other classes of steroid hormones—appear to function via the two-step model. It is generally accepted that steroids interact with a soluble receptor protein inducing a structural alteration that increases the receptors affinity for DNA or chromatin. This so-called activated form of the steroid–receptor complex accumulates within the nucleus of the cell leading to increased—and perhaps in some cases, decreased—transcription of specific genes. This chapter describes the glucocorticoid regulation of gene expression. The classes of new messenger RNAs (mRNAs) produced in response to a given steroid are in large part cell or tissue specific and their utilization in production of new proteins leads to the characteristic hormonal response of the target cell. The primary role of the steroid is to act as an allosteric effector that unmasks a DNA-binding site on the receptor protein. The chapter briefly reviews some of the studies on the glucocorticoid regulation of gene expression and presents a detailed account of the use of mouse mammary tumor virus (MMTV) in the mechanisms by which glucocorticoids regulate gene expression.