Deborah F. Smith
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah F. Smith.
Nature Genetics | 2007
Christopher S. Peacock; Kathy Seeger; David Harris; Lee Murphy; Jeronimo C. Ruiz; Michael A. Quail; Nick Peters; Ellen Adlem; Adrian Tivey; Martin Aslett; Arnaud Kerhornou; Alasdair Ivens; Audrey Fraser; Marie-Adele Rajandream; Tim Carver; Halina Norbertczak; Tracey Chillingworth; Zahra Hance; Kay Jagels; Sharon Moule; Doug Ormond; Simon Rutter; Rob Squares; Sally Whitehead; Ester Rabbinowitsch; Claire Arrowsmith; Brian R. White; Scott Thurston; Frédéric Bringaud; Sandra L. Baldauf
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
Nucleic Acids Research | 2010
Martin Aslett; Cristina Aurrecoechea; Matthew Berriman; John Brestelli; Brian P. Brunk; Mark Carrington; Daniel P. Depledge; Steve Fischer; Bindu Gajria; Xin Gao; Malcolm J. Gardner; Alan R. Gingle; Greg Grant; Omar S. Harb; Mark Heiges; Christiane Hertz-Fowler; Robin Houston; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Flora J. Logan; John A. Miller; Siddhartha Mitra; Peter J. Myler; Vishal Nayak; Cary Pennington; Isabelle Phan; Deborah F. Pinney
TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ‘User Comments’ may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate.
Genome Research | 2011
Matthew B. Rogers; James D. Hilley; Nicholas J. Dickens; Jon Wilkes; Paul A. Bates; Daniel P. Depledge; David J. Harris; Yerim Her; Pawel Herzyk; Hideo Imamura; Thomas D. Otto; Mandy Sanders; Kathy Seeger; Jean-Claude Dujardin; Matthew Berriman; Deborah F. Smith; Christiane Hertz-Fowler; Jeremy C. Mottram
Leishmania parasites cause a spectrum of clinical pathology in humans ranging from disfiguring cutaneous lesions to fatal visceral leishmaniasis. We have generated a reference genome for Leishmania mexicana and refined the reference genomes for Leishmania major, Leishmania infantum, and Leishmania braziliensis. This has allowed the identification of a remarkably low number of genes or paralog groups (2, 14, 19, and 67, respectively) unique to one species. These were found to be conserved in additional isolates of the same species. We have predicted allelic variation and find that in these isolates, L. major and L. infantum have a surprisingly low number of predicted heterozygous SNPs compared with L. braziliensis and L. mexicana. We used short read coverage to infer ploidy and gene copy numbers, identifying large copy number variations between species, with 200 tandem gene arrays in L. major and 132 in L. mexicana. Chromosome copy number also varied significantly between species, with nine supernumerary chromosomes in L. infantum, four in L. mexicana, two in L. braziliensis, and one in L. major. A significant bias against gene arrays on supernumerary chromosomes was shown to exist, indicating that duplication events occur more frequently on disomic chromosomes. Taken together, our data demonstrate that there is little variation in unique gene content across Leishmania species, but large-scale genetic heterogeneity can result through gene amplification on disomic chromosomes and variation in chromosome number. Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression in response to environmental conditions in the host, providing a genetic basis for disease tropism.
Infection and Immunity | 2004
Pascale Kropf; Marina A. Freudenberg; Manuel Modolell; Helen P. Price; Shanti Herath; Simone Antoniazi; Chris Galanos; Deborah F. Smith; Ingrid Müller
ABSTRACT The essential role of Toll-like receptors (TLR) in innate immune responses to bacterial pathogens is increasingly recognized, but very little is known about the role of TLRs in host defense against infections with eukaryotic pathogens. For the present study, we investigated whether TLRs contribute to the innate and acquired immune response to infection with the intracellular protozoan parasite Leishmania major. Our results show that TLR4 contributes to the control of parasite growth in both phases of the immune response. We also addressed the mechanism that results in killing or growth of the intracellular parasites. Control of parasite replication correlates with the early induction of inducible nitric oxide synthase in TLR4-competent mice, whereas increased parasite survival in host cells from TLR4-deficient mice correlates with a higher activity of arginase, an enzyme known to promote parasite growth. This is the first study showing that TLR4 contributes to the effective control of Leishmania infection in vivo.
Nature | 2010
Julie A. Frearson; Stephen Brand; Stuart P. McElroy; Laura A. T. Cleghorn; Ondrej Smid; Laste Stojanovski; Helen P. Price; M. Lucia S. Güther; Leah S. Torrie; David A. Robinson; Irene Hallyburton; Chidochangu P. Mpamhanga; James A. Brannigan; Anthony J. Wilkinson; Michael R. Hodgkinson; Raymond Hui; Wei Qiu; Olawale G. Raimi; Daan M. F. van Aalten; Ruth Brenk; Ian H. Gilbert; Kevin D. Read; Alan H. Fairlamb; Michael A. J. Ferguson; Deborah F. Smith; Paul G. Wyatt
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for ∼30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target—T. brucei N-myristoyltransferase—leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.
Nature Medicine | 2003
Simona Stäger; James Alexander; Alun C. Kirby; Marina Botto; Nico van Rooijen; Deborah F. Smith; Frank Brombacher; Paul M. Kaye
CD8+ T cells are essential for long-term, vaccine-induced resistance against intracellular pathogens. Here we show that natural antibodies, acting in concert with complement, are endogenous adjuvants for the generation of protective CD8+ T cells after vaccination against visceral leishmaniasis. IL-4 was crucial for the priming of vaccine-specific CD8+ T cells, and we defined the primary source of IL-4 as a CD11b+CD11clo phagocyte. IL-4 secretion was not observed in antibody-deficient mice and could be reconstituted with serum from normal, but not Btk immune-deficient, mice. Similarly, no IL-4 response or CD8+ T-cell priming was seen in C1qa−/− mice. These results identify a new pathway by which immune complex–mediated complement activation can regulate T-cell-mediated immunity. We propose that this function of natural antibodies could be exploited when developing new vaccines for infectious diseases.
Journal of Immunology | 2000
Simona Stäger; Deborah F. Smith; Paul M. Kaye
Vaccination against visceral leishmaniasis has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine against visceral leishmaniasis is pressing. In this study, we demonstrate for the first time that a recombinant stage-specific hydrophilic surface protein of Leishmania donovani, recombinant hydrophilic acylated surface protein B1 (HASPB1), is able to confer protection against experimental challenge. Protection induced by rHASPB1 does not require adjuvant and, unlike soluble Leishmania Ag + IL-12, extends to the control of parasite burden in the spleen, an organ in which parasites usually persist and are refractory to a broad range of immunological and chemotherapeutic interventions. Both immunohistochemistry (for IL-12p40) and enzyme-linked immunospot assay (for IL-12p70) indicate that immunization with rHASPB1 results in IL-12 production by dendritic cells, although an analysis of Ab isotype responses to rHASPB1 suggests that this response is not sufficient in magnitude to induce a polarized Th1 response. Although both vaccinated and control-infected mice have equivalent frequencies of rHASPB1-specific CD4+ T cells producing IFN-γ, vaccine-induced protection correlates with the presence of rHASPB1-specific, IFN-γ-producing CD8+ T cells. Thus, we have identified a novel vaccine candidate Ag for visceral leishmaniasis, which appears to operate via a mechanism similar to that previously associated with DNA vaccination.
Journal of Pharmacology and Experimental Therapeutics | 2008
Feng Liu; Steve Grauer; Cody Kelley; Rachel Navarra; Radka Graf; Guoming Zhang; Peter J. Atkinson; Michael Popiolek; Caitlin Wantuch; Xavier Khawaja; Deborah F. Smith; Michael Olsen; Evguenia Kouranova; Margaret Lai; Farhana Pruthi; Claudine Pulicicchio; Mark L. Day; Adam M. Gilbert; Mark H. Pausch; Nicholas J. Brandon; Chad E. Beyer; Tom A. Comery; Sheree F. Logue; Sharon Rosenzweig-Lipson; Karen L. Marquis
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca2+ assays (EC50 = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 μM) and competed for binding of [3H]2-methyl-6-(phenylethynyl)pyridine (Ki = 4.3 μM), but not [3H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.
Nucleic Acids Research | 2012
Flora J. Logan-Klumpler; Nishadi De Silva; Ulrike Boehme; Matthew B. Rogers; Giles S. Velarde; Jacqueline McQuillan; Tim Carver; Martin Aslett; Christian Olsen; Sandhya Subramanian; Isabelle Phan; Carol Farris; Siddhartha Mitra; Gowthaman Ramasamy; Haiming Wang; Adrian Tivey; W Andrew Jackson; Robin Houston; Julian Parkhill; Matthew T. G. Holden; Omar S. Harb; Brian P. Brunk; Peter J. Myler; David S. Roos; Mark Carrington; Deborah F. Smith; Christiane Hertz-Fowler; Matthew Berriman
GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms.
Mechanisms of Development | 2000
Huanchen Li; Elisabeth Wagner; Peter McCaffery; Deborah F. Smith; Athena Andreadis; Ursula C. Dräger
Most retinoic acid (RA) in the embryonic mouse is generated by three retinaldehyde dehydrogenases (RALDHs). RALDH1 (also called E1, AHD2 or ALDH1) is expressed in the dorsal retina, and RALDH2 (V2, ALDH11) generates most RA in the embryonic trunk. The third one, RALDH3 (V1), synthesizes the bulk of RA in the head of the early embryo. We show here that RALDH3 is a mouse homologue to ALDH6, an aldehyde dehydrogenase cloned from adult human salivary gland (Hsu, L.C., Chang, W.-C., Hiraoka, L., Hsien, C.-L., 1994. Molecular cloning, genomic organization, and chromosomal localization of an additional human aldehyde dehydrogenase gene, ALDH6. Genomics 24, 333-341), which was recently reported to act as a RALDH (Yoshida, A., Rzhetsky, A., Hsu, L.C., Chang, C., 1998. Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251, 549-557). RALDH3 expression begins in the surface ectoderm over the optic recess. In rapidly changing expression patterns it labels the appearance of several ectodermal structures: it marks the formation of the lens and the olfactory organ from ectodermal placodes, and it delineates the beginning eyelid field. Within the optic vesicle, RALDH3 is expressed in the ventral retina and the dorsal pigment epithelium. In the telencephalon, RALDH3 is expressed at high levels in the lateral part of the ganglionic eminence. From here it extends via the piriform cortex into the lower part of the septum. Of the three RALDHs, RALDH3 shows the strongest predilection for epithelia.