Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah G. Culver is active.

Publication


Featured researches published by Deborah G. Culver.


Annals of Neurology | 2002

Wlds mice are resistant to paclitaxel (taxol) neuropathy

Min Sheng Wang; Albert A. Davis; Deborah G. Culver; Jonathan D. Glass

The WldS mouse is a unique mutant strain that demonstrates the remarkable phenotype of prolonged survival of transected axons (“slow Wallerian degeneration”). In these studies, we tested whether this neuroprotective phenotype extends to axonal degeneration seen in a progressive peripheral neuropathy. WldS and wild‐type mice were intoxicated with the cancer chemotherapeutic agent paclitaxel (Taxol). The severity of the resultant sensory neuropathy was compared with behavioral, physiological, and pathological measures. WldS mice were resistant to paclitaxel neuropathy by all measures, and the resistance was because of protection against axonal degeneration. These studies demonstrate for the first time that the WldS mouse is more than a slow Wallerian degeneration phenotype, emphasizing the mechanistic link between Wallerian degeneration and peripheral neuropathy. Understanding how this mutant gene confers protection against axonal degeneration will provide important clues toward prevention of axonal degeneration in several human neurological disorders.


Annals of Neurology | 2001

The WldS protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy.

Min Sheng Wang; Guofu Fang; Deborah G. Culver; Albert A. Davis; Mark M. Rich; Jonathan D. Glass

The WldS mouse is a spontaneous mutant that is characterized by the phenotype of delayed degeneration of transected nerves (slow Wallerian degeneration). Molecular genetic analysis identified a mutation in this animal that codes for a unique protein expressed in brain tissue of WldS mice. We asked whether the WldS phenotype, in addition to delaying axonal degeneration after axotomy, might provide neuroprotection against toxic neuropathy. In dorsal root ganglia (DRG) cultures, neurites from WldS transiently exposed to vincristine not only resisted axonal degeneration but resumed growth after withdrawal of the toxin. Neurites from wild type mice died rapidly and did not recover. To prove that the identified mutation and its protein product are responsible for the WldS phenotype, we used an adenoviral gene transfer system to deliver the WldS to rat DRG neurons. Rat neurons expressing the WldS protein were resistant to vincristine‐induced axonal degeneration, confirming the functional significance of the identified gene mutation. These data provide evidence that the WldS protein can be neuroprotective against vincristine neuropathy, and possibly other disorders characterized by axonal degeneration. In addition, delivery of this gene to wild type cells can transfer the WldS phenotype, providing the possibility of “gene therapy” for peripheral neuropathy.


Journal of the Neurological Sciences | 2002

Very early activation of m-calpain in peripheral nerve during Wallerian degeneration

Jonathan D. Glass; Deborah G. Culver; Allan I. Levey; Norman Nash

Peripheral nerve injury results in a series of events culminating in degradation of the axonal cytoskeleton (Wallerian degeneration). In the time period between axotomy and cytoskeletal degradation (24-48 h in rodents), there is calcium entry and activation of calpains within the axon. The precise timing of these events during this period is unknown. In the present study, antibodies were generated to three distinct peptide epitopes of m-calpain, and a fusion protein antibody was generated to the intrinsic calpain inhibitor calpastatin. These antibodies were used to measure changes in these proteins in mouse sciatic nerves during Wallerian degeneration. In sciatic nerve homogenates and cultured dorsal root ganglion (DRG) neurites, m-calpain protein was significantly reduced in transected nerves very early after nerve injury, long before axonal degeneration occurred. Levels of m-calpain protein remained low as compared to control nerves for the remainder of the 72-h time course. No changes in calpastatin protein were evident. Systemic treatment of animals with the protease inhibitor leupeptin partially prevented the rapid loss of calpain protein. Removal of calcium in DRG cultures had the same effect. These data indicate that m-calpain protein is lost very early after axonal injury, and likely reflect activation and degradation of this protein long before the cytoskeleton is degraded. Calpain activation may be an early event in a proteolytic cascade that is initiated by axonal injury and culminates with axonal degeneration.


Integrative Biology | 2012

Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts

Shijun Zhu; Terry W. Moore; Xiaoqian Lin; Nao Morii; Alessandra Mancini; Randy B. Howard; Deborah G. Culver; Richard F. Arrendale; Prabhakar Reddy; Taylor J. Evers; Hongzheng Zhang; Gabriel Sica; Zhuo Georgia Chen; Aiming Sun; Haian Fu; Fadlo R. Khuri; Dong M. Shin; James P. Snyder; Mamoru Shoji

Objectives are to examine the efficacy, pharmacokinetics, and toxicology of a synthetic curcumin analog EF31 in head and neck squamous cell carcinoma. The synthesis of EF31 was described for the first time. Solubility of EF24 and EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5-6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg kg(-1), i.p. inhibited tumor growth almost completely. Solubilities of EF24 and EF31 are <10 and 13 μg mL(-1) or <32 and 47 μM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, they revealed a linear increase of C(max). EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analog EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-κB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis.


Journal of Medicinal Chemistry | 2012

Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents.

Jiyoung Mun; Adnan A. Jabbar; Narra S. Devi; Shaoman Yin; Yingzhe Wang; Chalet Tan; Deborah G. Culver; James P. Snyder; Erwin G. Van Meir; Mark M. Goodman

The hypoxia inducible factor (HIF) pathway is an attractive target for cancer, as it controls tumor adaptation to growth under hypoxia and mediates chemotherapy and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide as a novel, small-molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; log P(7.4) = 3.7). Here we describe the synthesis of 12 N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental log P(7.4) values of 8 of the 12 new analogs ranged from 1.2-3.1. Aqueous solubilities of three analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g., a solubility improvement of ∼9000-fold. The pharmacological optimization had limited impact on drug efficacy as the compounds retained IC(50) values at or below 5 μM in our HIF-dependent reporter assay.


ACS Medicinal Chemistry Letters | 2013

Discovery of Tetrahydroisoquinoline-Based CXCR4 Antagonists

Valarie M Truax; Huanyu Zhao; Brooke M. Katzman; Anthony R. Prosser; Ana A. Alcaraz; Manohar Saindane; Randy B. Howard; Deborah G. Culver; Richard F. Arrendale; Prahbakar R. Gruddanti; Taylor J. Evers; Michael G. Natchus; James P. Snyder; Dennis C. Liotta; Lawrence J. Wilson

A de novo hit-to-lead effort involving the redesign of benzimidazole-containing antagonists of the CXCR4 receptor resulted in the discovery of a novel series of 1,2,3,4-tetrahydroisoquinoline (TIQ) analogues. In general, this series of compounds show good potencies (3-650 nM) in assays involving CXCR4 function, including both inhibition of attachment of X4 HIV-1IIIB virus in MAGI-CCR5/CXCR4 cells and inhibition of calcium release in Chem-1 cells. Series profiling permitted the identification of TIQ-(R)-stereoisomer 15 as a potent and selective CXCR4 antagonist lead candidate with a promising in vitro profile. The drug-like properties of 15 were determined in ADME in vitro studies, revealing low metabolic liability potential. Further in vivo evaluations included pharmacokinetic experiments in rats and mice, where 15 was shown to have oral bioavailability (F = 63%) and resulted in the mobilization of white blood cells (WBCs) in a dose-dependent manner.


ACS Medicinal Chemistry Letters | 2011

Novel Synthesis and Biological Evaluation of Enigmols as Therapeutic Agents for Treating Prostate Cancer

Ethel C. Garnier-Amblard; Suzanne G. Mays; Richard F. Arrendale; Mark T. Baillie; Anatoliy S. Bushnev; Deborah G. Culver; Taylor J. Evers; Jason J. Holt; Randy B. Howard; Lanny S. Liebeskind; David S. Menaldino; Michael G. Natchus; John A. Petros; Harsha Ramaraju; G. Prabhakar Reddy; Dennis C. Liotta

Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind-Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.


Muscle & Nerve | 1999

Generation of spectrin breakdown products in peripheral nerves by addition of M-calpain

Maria Susana Castejon; Deborah G. Culver; Jonathan D. Glass

Identification of spectrin breakdown products (SBP) in tissues of the central nervous system (CNS) has been used to monitor calpain activity in models of neurodegeneration. We investigated the use of this technique in the peripheral nervous system (PNS) in order to use it as a marker of calpain‐mediated proteolysis during axonal degeneration. Using in vitro methods for activation of calpains, we compared brains and sciatic nerves from rats for the presence of calpain‐specific SBP. The 150‐kDa SBP identified on western blots was demonstrated in brain and nerve homogenates subjected to membrane disruption in the presence of calcium. Incubation of tissues with recombinant m‐calpain generated SBP in a dose‐dependent fashion, and calpastatin inhibited the generation of SBP by either paradigm. In contrast to brain, sciatic nerves showed the presence of SBP even in noninjured tissues, suggesting a basal level of calpain activity in peripheral nerves. Time‐course experiments showed that the generation of SBP in sciatic nerves correlated with the breakdown of axonal neurofilaments. SBP peaked within minutes after addition of m‐calpain and disappeared in the homogenates before 1 h, indicating that identification of SBP is a transient phenomenon. These data provide a potential new way for studying axonal degeneration in both experimental and human neuropathies.


ACS Medicinal Chemistry Letters | 2012

Water-Soluble Progesterone Analogues Are Effective, Injectable Treatments in Animal Models of Traumatic Brain Injury

David B. Guthrie; Donald G. Stein; Dennis C. Liotta; Mark A. Lockwood; Iqbal Sayeed; Fahim Atif; Richard F. Arrendale; G. Prabhakar Reddy; Taylor J. Evers; Jose R. Marengo; Randy B. Howard; Deborah G. Culver; Michael G. Natchus

After more than 30 years of research and 30 failed clinical trials with as many different treatments, progesterone is the first agent to demonstrate robust clinical efficacy as a treatment for traumatic brain injuries. It is currently being investigated in two, independent phase III clinical trials in hospital settings; however, it presents a formidable solubility challenge that has so far prevented the identification of a formulation that would be suitable for emergency field response use or battlefield situations. Accordingly, we have designed and tested a novel series of water-soluble analogues that address this critical need. We report here the synthesis of C-20 oxime conjugates of progesterone as therapeutic agents for traumatic brain injuries with comparable efficacy in animal models of traumatic brain injury and improved solubility and pharmacokinetic profiles. Pharmacodynamic analysis reveals that a nonprogesterone steroidal analogue may be primarily responsible for the observed activity.


ACS Medicinal Chemistry Letters | 2016

Discovery of a Fluorinated Enigmol Analog with Enhanced in Vivo Pharmacokinetic and Anti-Tumor Properties

Eric Miller; Suzanne G. Mays; Mark T. Baillie; Randy B. Howard; Deborah G. Culver; Manohar Saindane; Sarah T. Pruett; Jason J. Holt; David S. Menaldino; Taylor J. Evers; G. Prabhakar Reddy; Richard F. Arrendale; Michael G. Natchus; John A. Petros; Dennis C. Liotta

The orally bioavailable 1-deoxy-sphingosine analog, Enigmol, has demonstrated anticancer activity in numerous in vivo settings. However, as no Enigmol analog with enhanced potency in vitro has been identified, a new strategy to improve efficacy in vivo by increasing tumor uptake was adopted. Herein, synthesis and biological evaluation of two novel fluorinated Enigmol analogs, CF3-Enigmol and CF2-Enigmol, are reported. Each analog was equipotent to Enigmol in vitro, but achieved higher plasma and tissue levels than Enigmol in vivo. Although plasma and tissue exposures were anticipated to trend with fluorine content, CF2-Enigmol absorbed into tissue at strikingly higher concentrations than CF3-Enigmol. Using mouse xenograft models of prostate cancer, we also show that CF3-Enigmol underperformed Enigmol-mediated inhibition of tumor growth and elicited systemic toxicity. By contrast, CF2-Enigmol was not systemically toxic and demonstrated significantly enhanced antitumor activity as compared to Enigmol.

Collaboration


Dive into the Deborah G. Culver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert A. Davis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge