Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Hoogstraten is active.

Publication


Featured researches published by Deborah Hoogstraten.


Nature Genetics | 2004

A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A

Giuseppina Giglia-Mari; Frédéric Coin; Jeffrey A. Ranish; Deborah Hoogstraten; Arjan F. Theil; Nils Wijgers; Nicolaas G. J. Jaspers; Anja Raams; Manuela Argentini; P.J. van der Spek; Elena Botta; Miria Stefanini; Jean-Marc Egly; Ruedi Aebersold; Jan H.J. Hoeijmakers; Wim Vermeulen

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair–deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Molecular Cell | 2002

Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo.

Deborah Hoogstraten; Alex L. Nigg; Helen Heath; L.H.F. Mullenders; Roel van Driel; Jan H.J. Hoeijmakers; Wim Vermeulen; Adriaan B. Houtsmuller

The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for involvement of TFIIH in RNA polymerase I (RNAP1) transcription. Photobleaching revealed that TFIIH moves freely and gets engaged in RNAP1 and RNAP2 transcription for approximately 25 and approximately 6 s, respectively. TFIIH readily switches between transcription and repair sites (where it is immobilized for approximately 4 min) without large-scale alterations in composition. Our findings support a model of diffusion and random collision of individual components that permits a quick and versatile response to changing conditions.


American Journal of Human Genetics | 2007

First Reported Patient with Human ERCC1 Deficiency Has Cerebro-Oculo-Facio-Skeletal Syndrome with a Mild Defect in Nucleotide Excision Repair and Severe Developmental Failure

Nicolaas G. J. Jaspers; Anja Raams; Margherita Silengo; Nils Wijgers; Laura J. Niedernhofer; Andria Rasile Robinson; Giuseppina Giglia-Mari; Deborah Hoogstraten; Wim J. Kleijer; Jan H.J. Hoeijmakers; Wim Vermeulen

Nucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two progeroid syndromes: Cockayne and trichothiodystrophy syndromes. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Mutations in XPF are associated with mild XP and rarely with progeria. Mutations in ERCC1 have not been reported. Here, we describe the first case of human inherited ERCC1 deficiency. Patient cells showed moderate hypersensitivity to ultraviolet rays and mitomycin C, yet the clinical features were very severe and, unexpectedly, were compatible with a diagnosis of cerebro-oculo-facio-skeletal syndrome. This discovery represents a novel complementation group of patients with defective NER. Further, the clinical severity, coupled with a relatively mild repair defect, suggests novel functions for ERCC1.


Molecular and Cellular Biology | 2003

Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions

Suzanne Rademakers; Marcel Volker; Deborah Hoogstraten; Alex L. Nigg; Martijn J. Moné; Albert A. van Zeeland; Jan H.J. Hoeijmakers; Adriaan B. Houtsmuller; Wim Vermeulen

ABSTRACT Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient (∼5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair.


Cell | 2002

TFIIH Plays an Essential Role in RNA Polymerase I Transcription

Sebastian Iben; Herbert Tschochner; Mirko Bier; Deborah Hoogstraten; Pavel Hozák; Jean-Marc Egly; Ingrid Grummt

TFIIH is a multisubunit protein complex that plays an essential role in nucleotide excision repair and transcription of protein-coding genes. Here, we report that TFIIH is also required for ribosomal RNA synthesis in vivo and in vitro. In yeast, pre-rRNA synthesis is impaired in TFIIH ts strains. In a mouse, part of cellular TFIIH is localized within the nucleolus and is associated with subpopulations of both RNA polymerase I and the basal factor TIF-IB. Transcription systems lacking TFIIH are inactive and exogenous TFIIH restores transcriptional activity. TFIIH is required for productive but not abortive rDNA transcription, implying a postinitiation role in transcription. The results provide a molecular link between RNA polymerase I transcription and transcription-coupled repair of active ribosomal RNA genes.


EMBO Reports | 2003

Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules

Pernette J. Verschure; Ineke van der Kraan; Erik M. M. Manders; Deborah Hoogstraten; Adriaan B. Houtsmuller; Roel van Driel

Most chromatin in interphase nuclei is part of condensed chromatin domains. Previous work has indicated that transcription takes place predominantly at the surface of chromatin domains, that is, in the perichromatin region. It is possible that genes inside chromatin domains are silenced due to inaccessibility to macromolecular components of the transcription machinery. We have tested the accessibility of chromatin domains in nuclei of living cells with proteins and dextrans of different molecular sizes. Our results show that chromatin domains are readily accessible to large macromolecules, including proteins with a molecular weight of several hundred kilodaltons. Therefore, the silencing of genes that are incorporated into such domains is not due to the physical inaccessibility of condensed chromatin domains to transcription factors.


Journal of Cell Biology | 2004

DNA damage stabilizes interaction of CSB with the transcription elongation machinery

Vincent van den Boom; Elisabetta Citterio; Deborah Hoogstraten; Angelika Zotter; Jean-Marc Egly; Wiggert A. van Cappellen; Jan H.J. Hoeijmakers; Adriaan B. Houtsmuller; Wim Vermeulen

The Cockayne syndrome B (CSB) protein is essential for transcription-coupled DNA repair (TCR), which is dependent on RNA polymerase II elongation. TCR is required to quickly remove the cytotoxic transcription-blocking DNA lesions. Functional GFP-tagged CSB, expressed at physiological levels, was homogeneously dispersed throughout the nucleoplasm in addition to bright nuclear foci and nucleolar accumulation. Photobleaching studies showed that GFP-CSB, as part of a high molecular weight complex, transiently interacts with the transcription machinery. Upon (DNA damage-induced) transcription arrest CSB binding these interactions are prolonged, most likely reflecting actual engagement of CSB in TCR. These findings are consistent with a model in which CSB monitors progression of transcription by regularly probing elongation complexes and becomes more tightly associated to these complexes when TCR is active.


DNA Repair | 2009

The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation.

Nico P. Dantuma; Christian Heinen; Deborah Hoogstraten

A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cells ability to cope with stress conditions.


Journal of Cell Science | 2008

Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC

Deborah Hoogstraten; Steven Bergink; Jessica M.Y. Ng; Vincent Verbiest; Martijn S. Luijsterburg; Bart Geverts; Anja Raams; Christoffel Dinant; Jan H.J. Hoeijmakers; Wim Vermeulen; Adriaan B. Houtsmuller

To investigate how the nucleotide excision repair initiator XPC locates DNA damage in mammalian cell nuclei we analyzed the dynamics of GFP-tagged XPC. Photobleaching experiments showed that XPC constantly associates with and dissociates from chromatin in the absence of DNA damage. DNA-damaging agents retard the mobility of XPC, and UV damage has the most pronounced effect on the mobility of XPC-GFP. XPC exhibited a surprising distinct dynamic behavior and subnuclear distribution compared with other NER factors. Moreover, we uncovered a novel regulatory mechanism for XPC. Under unchallenged conditions, XPC is continuously exported from and imported into the nucleus, which is impeded when NER lesions are present. XPC is omnipresent in the nucleus, allowing a quick response to genotoxic stress. To avoid excessive DNA probing by the low specificity of the protein, the steady-state level in the nucleus is controlled by nucleus-cytoplasm shuttling, allowing temporally higher concentrations of XPC in the nucleus under genotoxic stress conditions.


PLOS Biology | 2006

Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells.

Giuseppina Giglia-Mari; Catherine Miquel; Arjan F. Theil; Pierre-Olivier Mari; Deborah Hoogstraten; Jessica M.Y. Ng; Christoffel Dinant; Jan H.J. Hoeijmakers; Wim Vermeulen

Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER.

Collaboration


Dive into the Deborah Hoogstraten's collaboration.

Top Co-Authors

Avatar

Wim Vermeulen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan H.J. Hoeijmakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Raams

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Christoffel Dinant

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jessica M.Y. Ng

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Bergink

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex L. Nigg

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge