Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah J. Fowell is active.

Publication


Featured researches published by Deborah J. Fowell.


Journal of Immunology | 2006

T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine

James J. Kobie; Pranav R. Shah; Li Yang; Jonathan Rebhahn; Deborah J. Fowell; Tim R. Mosmann

CD73 (5′-ectonucleotidase) is expressed by two distinct mouse CD4 T cell populations: CD25+ (FoxP3+) T regulatory (Treg) cells that suppress T cell proliferation but do not secrete IL-2, and CD25− uncommitted primed precursor Th (Thpp) cells that secrete IL-2 but do not suppress in standard Treg suppressor assays. CD73 on both Treg and Thpp cells converted extracellular 5′-AMP to adenosine. Adenosine suppressed proliferation and cytokine secretion of Th1 and Th2 effector cells, even when target cells were activated by anti-CD3 and anti-CD28. This represents an additional suppressive mechanism of Treg cells and a previously unrecognized suppressive activity of Thpp cells. Infiltration of either Treg or Thpp cells at inflammatory sites could potentially convert 5′-AMP generated by neutrophils or dying cells into the anti-inflammatory mediator adenosine, thus dampening excessive immune reactions.


Immunity | 1999

Impaired NFATc Translocation and Failure of Th2 Development in Itk-Deficient CD4+ T Cells

Deborah J. Fowell; Kanade Shinkai; X. Charlene Liao; Amy M Beebe; Robert L. Coffman; Dan R. Littman; Richard M. Locksley

Naive Itk-deficient CD4+ T cells were unable to establish stable IL-4 production, even when primed in Th2-inducing conditions. In contrast, IFNgamma production was little affected. Failure to express IL-4 occurred even among cells that had gone through multiple cell divisions and was associated with a delay in the kinetics and magnitude of NFATc nuclear localization. IL-4 production was restored genetically by retroviral reconstitution of Itk or biochemically by augmenting the calcium flux with ionomycin. In vivo, Itk-deficient mice were unable to establish functional Th2 cells. Development of protective Th1 cells was unimpeded. These data define a nonredundant role for Itk in modulating signals from the TCR/CD28 pathways that are specific for the establishment of stable IL-4 but not IFNgamma expression.


Immunology | 2008

Mechanisms of regulatory T-cell suppression – a diverse arsenal for a moving target

Dorothy K. Sojka; Yu-Hui Huang; Deborah J. Fowell

Naturally‐occurring regulatory T cells (Tregs) are emerging as key regulators of immune responses to self‐tissues and infectious agents. Insight has been gained into the cell types and the cellular events that are regulated by Tregs. Indeed, Tregs have been implicated in the control of initial activation events, proliferation, differentiation and effector function. However, the mechanisms by which Tregs disable their cellular targets are not well understood. Here we review recent advances in the identification of distinct mechanisms of Treg action and of signals that enable cellular targets to escape regulation. Roles for inhibitory cytokines, cytotoxic molecules, modulators of cAMP and cytokine competition have all been demonstrated. The growing number of inhibitory mechanisms ascribed to Tregs suggests that Tregs take a multi‐pronged approach to immune regulation. It is likely that the relative importance of each inhibitory mechanism is context dependent and modulated by the inflammatory milieu and the magnitude of the immune response. In addition, the target cell may be differentially susceptible or resistant to distinct Treg mechanisms depending on their activation or functional status at the time of the Treg encounter. Understanding when and where each suppressive tool is most effective will help to fine tune therapeutic strategies to promote or constrain specific arms of Treg suppression.


Journal of Immunology | 2000

Requirements for the Maintenance of Th1 Immunity In Vivo Following DNA Vaccination: A Potential Immunoregulatory Role for CD8+ T Cells

Sanjay Gurunathan; Laura Stobie; Calmin Prussin; David L. Sacks; Nicolas Glaichenhaus; Deborah J. Fowell; Richard M. Locksley; John T. Chang; Chang-You Wu; Robert A. Seder

Protective immunity against Leishmania major generated by DNA encoding the LACK (Leishmania homologue of receptor for activated C kinase) Ag has been shown to be more durable than vaccination with LACK protein plus IL-12. One mechanism to account for this may be the selective ability of DNA vaccination to induce CD8+ IFN-γ-producing T cells. In this regard, we previously reported that depletion of CD8+ T cells in LACK DNA-vaccinated mice abrogated protection when infectious challenge was done 2 wk postvaccination. In this study, we extend these findings to study the mechanism by which CD8+ T cells induced by LACK DNA vaccination mediate both short- and long-term protective immunity against L. major. Mice vaccinated with LACK DNA and depleted of CD8+ T cells at the time of vaccination or infection were unable to control infection when challenge was done 2 or 12 wk postvaccination. Remarkably, it was noted that depletion of CD8+ T cells in LACK DNA-vaccinated mice was associated with a striking decrease in the frequency of LACK-specific CD4+ IFN-γ-producing T cells both before and after infection. Moreover, data are presented to suggest a mechanism by which CD8+ T cells exert this regulatory role. Taken together, these data provide additional insight into how Th1 cells are generated and sustained in vivo and suggest a potentially novel immunoregulatory role for CD8+ T cells following DNA vaccination.


Immunity | 1997

Impaired Th2 Subset Development in the Absence of CD4

Deborah J. Fowell; Jeanne Magram; Christoph W. Turck; Nigel Killeen; Richard M. Locksley

Prior studies in CD4-deficient mice established the capacity of T helper (Th) lineage cells to mature into Th1 cells. Unexpectedly, challenge of these mice with Nippostrongylus brasiliensis, a Th2-inducing stimulus, failed to result in the development of Th2 cells. Additional studies were performed using CD4+ or CD4-CD8- (double-negative) T cell receptor (TCR) transgenic T cells reactive to LACK antigen of Leishmania major. Double-negative T cells were unable to develop into Th2 cells in vivo, and, unlike CD4+ T cells, could not be primed for interleukin-4 production in vitro. Similarly, CD4+ TCR transgenic T cells primed on antigen-presenting cells expressing mutant MHC class II molecules unable to bind CD4 did not differentiate into Th2 cells. These data suggest that interactions between the TCR, MHC II-peptide complex and CD4 may be involved in Th2 development.


European Journal of Immunology | 2009

CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation.

Dorothy K. Sojka; Angela Hughson; Deborah J. Fowell

CTLA‐4 is constitutively expressed by CD4+CD25+Foxp3+ Treg but its precise role in Treg function is not clear. Although blockade of CTLA‐4 interferes with Treg function, studies using CTLA‐4‐deficient Treg have failed to reveal an essential requirement for CTLA‐4 in Treg suppression in vivo. Conditional deletion of CTLA‐4 in Foxp3+ T cells disrupts immune homeostasis in vivo but the immune processes disrupted by CTLA‐4 deletion have not been determined. We demonstrate that Treg expression of CTLA‐4 is essential for Treg control of lymphopenia‐induced CD4 T‐cell expansion. Despite IL‐10 expression, CTLA‐4‐deficient Treg were unable to control the expansion of CD4+ target cells in a lymphopenic environment. Moreover, unlike their WT counterparts, CTLA‐4‐deficient Treg failed to inhibit cytokine production associated with homeostatic expansion and were unable to prevent colitis. Thus, while Treg developing in the absence of CTLA‐4 appear to acquire some compensatory suppressive mechanisms in vitro, we identify a non‐redundant role for CTLA‐4 in Treg function in vivo.


Journal of Experimental Medicine | 2012

Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels

Young Min Hyun; Ronen Sumagin; Pranita P. Sarangi; Elena B. Lomakina; Michael G. Overstreet; Christina M. Baker; Deborah J. Fowell; Richard E. Waugh; Ingrid H. Sarelius; Minsoo Kim

Uropod elongation occurs during leukocyte extravasation.


Nature Immunology | 2013

Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent

Michael G. Overstreet; Alison Gaylo; Bastian R. Angermann; Angela Hughson; Young-Min Hyun; Kris Lambert; Mridu Acharya; Alison C. Billroth-MacLurg; Alexander F. Rosenberg; David J. Topham; Hideo Yagita; Minsoo Kim; Adam Lacy-Hulbert; Martin Meier-Schellersheim; Deborah J. Fowell

Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues seems to be integrin independent and based on actomyosin-mediated protrusion and contraction, during inflammation, changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that the interstitial motility of T cells was critically dependent on Arg-Gly-Asp (RGD)-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to higher expression of integrin αV on effector CD4+ T cells. By intravital multiphoton imaging, we found that the motility of CD4+ T cells was dependent on αV expression. Selective blockade or knockdown of αV arrested T helper type 1 (TH1) cells in the inflamed tissue and attenuated local effector function. Our data demonstrate context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.


Journal of Immunology | 2005

Early Kinetic Window of Target T Cell Susceptibility to CD25+ Regulatory T Cell Activity

Dorothy K. Sojka; Angela Hughson; Teresa L. Sukiennicki; Deborah J. Fowell

Peripheral tolerance is maintained in part by thymically derived CD25+CD4+ T cells (regulatory T cells (Tregs)). Their mechanism of action has not been well characterized. Therefore, to get a better understanding of Treg action, we investigated the kinetics of murine Treg activity in vitro. Tregs were suppressive within a surprisingly narrow kinetic window: necessary and sufficient only in the first 6–10 h of culture. Visualization of this time frame, using a sensitive single-cell assay for IL-2, revealed the early elaboration of target cell IL-2 producers in the first 6 h despite the presence of CD25+CD4+ Tregs. However, after 6 h, a rapid rise in the number of IL-2 producers in the absence of Tregs was dramatically abrogated by the presence of Tregs. Importantly, the timing of suppression was dictated by the kinetics of target T cell activation suggesting that early target T cell signals may alter susceptibility to suppression. Modulating target T cell activation signals with provision of CD28, IL-2, or high Ag dose all abrogated suppression of proliferation late in culture. However, only CD28 signals enabled target T cells to resist the early Treg-induced down-regulation of IL-2. Therefore the quality of early target T cell activation signals, in particular engagement of CD28, represents an important control point in the balance between vulnerability and resistance to Treg suppression.


Journal of Immunology | 2006

Cutting Edge: Itk-Dependent Signals Required for CD4+ T Cells to Exert, but Not Gain, Th2 Effector Function

Byron B. Au-Yeung; Shoshana Katzman; Deborah J. Fowell

The TCR signals for the release of CD4 effector function are poorly understood. Itk plays an essential role in Th2, but not Th1, responses. However, when Itk is required during Th2 development is unclear. We followed the fate of Itk-deficient T cells during Th2 development in vitro and in vivo using an IL-4/GFP reporter. Surprisingly, a similar frequency of itk−/− CD4+ cells differentiated and committed to the Th2 lineage as wild-type cells. However, Itk-deficient Th2 cells failed to exert effector function upon TCR triggering. Loss of function was marked by defective transcriptional enhancement of Th2 cytokines and GATA3. IL-4 production in itk−/− Th2s could be rescued by the expression of kinase-active Itk. Thus, Itk is necessary for the release, but not gain, of Th2 function. We suggest that the liberation of effector function is tightly controlled through qualitative changes in TCR signals, facilitating postdifferentiation regulation of cytokine responses.

Collaboration


Dive into the Deborah J. Fowell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adil E. Wakil

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Bix

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge