Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah K. Lieu is active.

Publication


Featured researches published by Deborah K. Lieu.


Analytical Chemistry | 2009

Label-Free Separation of Human Embryonic Stem Cells and Their Cardiac Derivatives Using Raman Spectroscopy

James W. Chan; Deborah K. Lieu; Thomas Huser; Ronald A. Li

Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and nonrecoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a nondestructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combination of the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98%, and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the noninvasive and label-free sorting of (i) high-quality hESCs for expansion and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.


Stem Cells and Development | 2009

Absence of transverse tubules contributes to non-uniform Ca2+ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes

Deborah K. Lieu; Jing Liu; Chung-Wah Siu; Gregory P. McNerney; Hung-Fat Tse; Amir Abu-Khalil; Thomas Huser; Ronald A. Li

Mouse (m) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are known to exhibit immature Ca(2+) dynamics such as small whole-cell peak amplitude and slower kinetics relative to those of adult. In this study, we examined the maturity and efficiency of Ca(2+)-induced Ca(2+) release in m and hESC-CMs, the presence of transverse (t) tubules and its effects on the regional Ca(2+) dynamics. In m and hESC-CMs, fluorescent staining and atomic force microscopy (AFM) were used to detect the presence of t-tubules, caveolin-3, amphiphysin-2 and colocalization of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs). To avoid ambiguities, regional electrically-stimulated Ca(2+) dynamics of single ESC-CMs, rather than spontaneously beating clusters, were measured using confocal microscopy. m and hESC-CMs showed absence of dyads, with neither t-tubules nor colocalization of DHPRs and RyRs. Caveolin-3 and amphiphysin-2, crucial for the biogenesis of t-tubules with robust expression in adult CMs, were also absent. Single m and hESC-CMs displayed non-uniform Ca(2+) dynamics across the cell that is typical of CMs deficient of t-tubules. Local Ca(2+) transients exhibited greater peak amplitude at the peripheral than at the central region for m (3.50 +/- 0.42 vs. 3.05 +/- 0.38) and hESC-CMs (2.96 +/- 0.25 vs. 2.72 +/- 0.25). Kinetically, both the rates of rise to peak amplitude and transient decay were faster for the peripheral relative to the central region. Immature m and hESC-CMs display unsynchronized Ca(2+) transients due to the absence of t-tubules and gene products crucial for their biogenesis. Our results provide insights for driving the maturation of ESC-CMs.


PLOS ONE | 2011

Distinct Roles of MicroRNA-1 and -499 in Ventricular Specification and Functional Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes

Ji Dong Fu; Stephanie N. Rushing; Deborah K. Lieu; Camie W. Chan; Chi Wing Kong; Lin Geng; Kitchener D. Wilson; Nipavan Chiamvimonvat; Kenneth R. Boheler; Joseph C. Wu; Gordon Keller; Roger J. Hajjar; Ronald A. Li

Background MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. Methods and Results We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p<0.05) and contractile protein expression without affecting their electrophysiological properties (p>0.05). By contrast, LV-miR-1 transduction did not bias the yield (p>0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased Ito, IKs and IKr, and decreased If (p<0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca2+ transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. Conclusion We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.


Circulation-arrhythmia and Electrophysiology | 2013

Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes.

Deborah K. Lieu; Ji-Dong Fu; Nipavan Chiamvimonvat; Kelvin W. Chan Tung; Gregory P. McNerney; Thomas Huser; Gordon Keller; Chi-Wing Kong; Ronald A. Li

Background—Human embryonic stem cells (hESCs) can be efficiently and reproducibly directed into cardiomyocytes (CMs) using stage-specific induction protocols. However, their functional properties and suitability for clinical and other applications have not been evaluated. Methods and Results—Here we showed that CMs derived from multiple pluripotent human stem cell lines (hESC: H1, HES2) and types (induced pluripotent stem cell) using different in vitro differentiation protocols (embryoid body formation, endodermal induction, directed differentiation) commonly displayed immature, proarrhythmic action potential properties such as high degree of automaticity, depolarized resting membrane potential, Phase 4- depolarization, and delayed after-depolarization. Among the panoply of sarcolemmal ionic currents investigated (INa+/ICaL+/IKr+/INCX+/If+/Ito+/IK1−/IKs−), we pinpointed the lack of the Kir2.1-encoded inwardly rectifying K+ current (IK1) as the single mechanistic contributor to the observed immature electrophysiological properties in hESC-CMs. Forced expression of Kir2.1 in hESC-CMs led to robust expression of Ba2+-sensitive IK1 and, more importantly, completely ablated all the proarrhythmic action potential traits, rendering the electrophysiological phenotype indistinguishable from the adult counterparts. These results provided the first link of a complex developmentally arrested phenotype to a major effector gene, and importantly, further led us to develop a bio-mimetic culturing strategy for enhancing maturation. Conclusions—By providing the environmental cues that are missing in conventional culturing method, this approach did not require any genetic or pharmacological interventions. Our findings can facilitate clinical applications, drug discovery, and cardiotoxicity screening by improving the yield, safety, and efficacy of derived CMs.


Stem Cells Translational Medicine | 2014

Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes

Ioannis Karakikes; Grant Senyei; Jens Hansen; Chi Wing Kong; Evren U. Azeloglu; Francesca Stillitano; Deborah K. Lieu; Jiaxian Wang; Lihuan Ren; Jean Sebastien Hulot; Ravi Iyengar; Ronald A. Li; Roger J. Hajjar

The generation of human ventricular cardiomyocytes from human embryonic stem cells and/or induced pluripotent stem cells could fulfill the demand for therapeutic applications and in vitro pharmacological research; however, the production of a homogeneous population of ventricular cardiomyocytes remains a major limitation. By combining small molecules and growth factors, we developed a fully chemically defined, directed differentiation system to generate ventricular‐like cardiomyocytes (VCMs) from human embryonic stem cells and induced pluripotent stem cells with high efficiency and reproducibility. Molecular characterization revealed that the differentiation recapitulated the developmental steps of cardiovascular fate specification. Electrophysiological analyses further illustrated the generation of a highly enriched population of VCMs. These chemically induced VCMs exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate chronotropic responses to cardioactive compounds. In addition, using an integrated computational and experimental systems biology approach, we demonstrated that the modulation of the canonical Wnt pathway by the small molecule IWR‐1 plays a key role in cardiomyocyte subtype specification. In summary, we developed a reproducible and efficient experimental platform that facilitates a chemical genetics‐based interrogation of signaling pathways during cardiogenesis that bypasses the limitations of genetic approaches and provides a valuable source of ventricular cardiomyocytes for pharmacological screenings as well as cell replacement therapies.


Journal of Biophotonics | 2009

Label‐free biochemical characterization of stem cells using vibrational spectroscopy

James W. Chan; Deborah K. Lieu

Raman and infrared (IR) spectroscopy are two complementary vibrational spectroscopic techniques that have experienced a tremendous growth in their use in biological and biomedical research. This is, in large part, due to their unique capability of providing label-free intrinsic chemical information of living biological samples at tissue, cellular, or sub-cellular resolutions. This article reviews recent developments in applying these techniques for the characterization of stem cells. A discussion of the potential for these methods to address some of the major challenges in stem cell research is presented, as well as the technological and scientific advancements that are needed to progress the knowledge in the field.


American Journal of Physiology-cell Physiology | 2009

Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression

Jing Liu; Deborah K. Lieu; Chung-Wah Siu; Ji Dong Fu; Hung-Fat Tse; Ronald A. Li

Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca(2+) handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca(2+) transient amplitudes, slower kinetics, and reduced Ca(2+) content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca(2+) handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca(2+)-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQDelta-IRES-GFP (Ad-CSQDelta, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca(2+) content but did not alter L-type Ca(2+) current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQDelta-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca(2+) transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca(2+) handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening.


Circulation | 2007

Mechanistic Role of If Revealed by Induction of Ventricular Automaticity by Somatic Gene Transfer of Gating-Engineered Pacemaker (HCN) Channels

Tian Xue; Chung-Wah Siu; Deborah K. Lieu; Chu Pak Lau; Hung-Fat Tse; Ronald A. Li

Background— Although If, encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channel gene family, is known to be functionally important in pacing, its mechanistic action is largely inferential and indeed somewhat controversial. To dissect in detail the role of If, we investigated the functional consequences of overexpressing in adult guinea pig left ventricular cardiomyocytes (LVCMs) various HCN1 constructs that have been engineered to exhibit different gating properties. Methods and Results— We created the recombinant adenoviruses Ad-CMV-GFP-IRES (CGI), Ad-CGI-HCN1, Ad-CGI-HCN1-&Dgr;&Dgr;&Dgr;, and Ad-CGI-HCN1-Ins, which mediate ectopic expression of GFP alone, WT, EVY235-7&Dgr;&Dgr;&Dgr;, and Ins HCN1 channels, respectively; EVY235-7&Dgr;&Dgr;&Dgr; and Ins encode channels in which the S3–S4 linkers have been shortened and lengthened to favor and inhibit opening, respectively. Ad-CGI-HCN1, Ad-CGI-HCN1-&Dgr;&Dgr;&Dgr;, and Ad-CGI-HCN1-Ins, but not control Ad-CGI, transduction of LVCMs led to robust expression of If with comparable densities when fully open (≈−22 pA/pF at −140 mV; P>0.05) but distinctive activation profiles (V1/2=−70.8±0.6, −60.4±0.7, and −87.7±0.7 mV; P<0.01, respectively). Whereas control (nontransduced or Ad-CGI–transduced) LVCMs were electrically quiescent, automaticity (206±16 bpm) was observed exclusively in 61% of Ad-HCN1-&Dgr;&Dgr;&Dgr;–transduced cells that displayed depolarized maximum diastolic potential (−60.6±0.5 versus −70.6±0.6 mV of resting membrane potential of control cells; P<0.01) and gradual phase 4 depolarization (306±32 mV/s) that were typical of genuine nodal cells. Furthermore, spontaneously firing Ad-HCN1-&Dgr;&Dgr;&Dgr;–transduced LVCMs responded positively to adrenergic stimulation (P<0.05) but exhibited neither overdrive excitation nor suppression. In contrast, the remaining 39% of Ad-HCN1-&Dgr;&Dgr;&Dgr;–transduced cells exhibited no spontaneous action potentials; however, a single ventricular action potential associated with a depolarized resting membrane potential and a unique, incomplete “phase 4–like” depolarization that did not lead to subsequent firing could be elicited on simulation. Such an intermediate phenotype, similarly observed in 100% of Ad-CGI-HCN– and Ad-CGI-HCN1-Ins–transduced LVCMs, could be readily reversed by ZD7288, hinting at a direct role of If. Correlation analysis revealed the specific biophysical parameters required for If to function as an active membrane potential oscillator. Conclusions— Our results not only contribute to a better understanding of cardiac pacing but also may advance current efforts that focus primarily on automaticity induction to the next level by enabling bioengineering of central and peripheral cells that make up the native sinoatrial node.


Heart Rhythm | 2008

Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers.

Deborah K. Lieu; Yau Chi Chan; Chu Pak Lau; Hung-Fat Tse; Chung-Wah Siu; Ronald A. Li

BACKGROUND Current strategies of engineering bioartificial pacemakers from otherwise silent yet excitable adult atrial and ventricular cardiomyocytes primarily rely on either maximizing the hyperpolarization-activated I(f) or on minimizing its presumptive opponent, the inwardly rectifying potassium current I(K1). OBJECTIVE The purpose of this study was to determine quantitatively the relative current densities of I(f) and I(K1) necessary to induce automaticity in adult atrial cardiomyocytes. METHODS Automaticity of adult guinea pig atrial cardiomyocytes was induced by adenovirus (Ad)-mediated overexpression of the gating-engineered HCN1 construct HCN1-DeltaDeltaDelta with the S3-S4 linker residues EVY235-7 deleted to favor channel opening. RESULTS Whereas control atrial cardiomyocytes remained electrically quiescent and had no I(f), 18% of Ad-CMV-GFP-IRES-HCN1-DeltaDeltaDelta (Ad-CGI-HCN1-DeltaDeltaDelta)-transduced cells demonstrated automaticity (240 +/- 14 bpm) with gradual phase 4 depolarization (143 +/- 28 mV/s), a depolarized maximal diastolic potential (-45.3 +/- 2.2 mV), and substantial I(f) at -140 mV (I(f,-140 mV) = -9.32 +/- 1.84 pA/pF). In the remaining quiescent Ad-CGI-HCN1-DeltaDeltaDelta-transduced atrial cardiomyocytes, two distinct immediate phenotypes were observed: (1) 13% had a hyperpolarized resting membrane potential (-56.7 +/- 1.3 mV) with I(f,-140 mV) of -4.85 +/- 0.97 pA/pF; and (2) the remaining 69% displayed a depolarized resting membrane potential (-27.6 +/- 1.3 mV) with I(f,-140 mV) of -23.0 +/- 3.71 pA/pF. Upon electrical stimulation, both quiescent groups elicited a single action potential with incomplete phase 4 depolarization that was never seen in controls. Further electrophysiologic analysis indicates that an intricate balance of I(K1) and I(f) is necessary for induction of atrial automaticity. CONCLUSION Optimized pacing induction and modulation can be better achieved by engineering the I(f)/I(K1) ratio rather than the individual currents.


Heart Rhythm | 2015

Small-conductance Ca2+-activated K+ channels and cardiac arrhythmias

Xiao Dong Zhang; Deborah K. Lieu; Nipavan Chiamvimonvat

Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

Collaboration


Dive into the Deborah K. Lieu's collaboration.

Top Co-Authors

Avatar

Ronald A. Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

James W. Chan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung-Fat Tse

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Samir Awasthi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaxian Wang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge