Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Krakow is active.

Publication


Featured researches published by Deborah Krakow.


American Journal of Medical Genetics Part A | 2007

Nosology and classification of genetic skeletal disorders: 2010 revision

Matthew L. Warman; Valérie Cormier-Daire; Christine M. Hall; Deborah Krakow; Ralph S. Lachman; Martine Lemerrer; Geert Mortier; Stefan Mundlos; Gen Nishimura; David L. Rimoin; Stephen P. Robertson; Ravi Savarirayan; David Sillence; Juergen Spranger; Sheila Unger; Bernhard Zabel; Andrea Superti-Furga

The objective of the paper is to provide the revision of the Nosology of Constitutional Disorders of Bone that incorporates newly recognized disorders and reflects new molecular and pathogenetic concepts. Criteria for inclusion of disorders were (1) significant skeletal involvement corresponding to the definition of skeletal dysplasias, metabolic bone disorders, dysostoses, and skeletal malformation and/or reduction syndromes, (2) publication and/or MIM listing, (3) genetic basis proven or very likely, and (4) nosologic autonomy confirmed by molecular or linkage analysis and/or distinctive diagnostic features and observation in multiple individuals or families. Three hundred seventy‐two different conditions were included and placed in 37 groups defined by molecular, biochemical and/or radiographic criteria. Of these conditions, 215 were associated with one or more of 140 different genes. Nosologic status was classified as final (mutations or locus identified), probable (pedigree evidence), or bona fide (multiple observations and clear diagnostic criteria, but no pedigree or locus evidence yet). The number of recognized genetic disorders with a significant skeletal component is growing and the distinction between dysplasias, metabolic bone disorders, dysostoses, and malformation syndromes is blurring. For classification purposes, pathogenetic and molecular criteria are integrating with morphological ones but disorders are still identified by clinical features and radiographic appearance. Molecular evidence leads to confirmation of individual entities and to the constitution of new groups, but also allows for delineation of related but distinct entities and indicates a previously unexpected heterogeneity of molecular mechanisms; thus, molecular evidence does not necessarily simplify the Nosology, and a further increase in the number of entities and growing complexity is expected. By providing an updated overview of recognized entities with skeletal involvement and of the underlying gene defects, the new Nosology can provide practical diagnostic help, facilitate the recognition of new entities, and foster and direct research in skeletal biology and genetic disorders.


American Journal of Human Genetics | 1999

Human Ehlers-Danlos Syndrome Type VII C and Bovine Dermatosparaxis Are Caused by Mutations in the Procollagen I N-Proteinase Gene

Alain Colige; Aleksander L. Sieron; Shi-Wu Li; Ulrike Schwarze; Elizabeth M. Petty; Wladimir Wertelecki; William R. Wilcox; Deborah Krakow; Daniel H. Cohn; W. Reardon; Peter H. Byers; Charles M. Lapière; Darwin J. Prockop; Betty Nusgens

Ehlers-Danlos syndrome (EDS) type VIIC is a recessively inherited connective-tissue disorder, characterized by extreme skin fragility, characteristic facies, joint laxity, droopy skin, umbilical hernia, and blue sclera. Like the animal model dermatosparaxis, EDS type VIIC results from the absence of activity of procollagen I N-proteinase (pNPI), the enzyme that excises the N-propeptide of type I and type II procollagens. The pNPI enzyme is a metalloproteinase containing properdin repeats and a cysteine-rich domain with similarities to the disintegrin domain of reprolysins. We used bovine cDNA to isolate human pNPI. The human enzyme exists in two forms: a long version similar to the bovine enzyme and a short version that contains the Zn++-binding catalytic site but lacks the entire C-terminal domain in which the properdin repeats are located. We have identified the mutations that cause EDS type VIIC in the six known affected human individuals and also in one strain of dermatosparactic calf. Five of the individuals with EDS type VIIC were homozygous for a C-->T transition that results in a premature termination codon, Q225X. Four of these five patients were homozygous at three downstream polymorphic sites. The sixth patient was homozygous for a different transition that results in a premature termination codon, W795X. In the dermatosparactic calf, the mutation is a 17-bp deletion that changes the reading frame of the message. These data provide direct evidence that EDS type VIIC and dermatosparaxis result from mutations in the pNPI gene.


Nature Genetics | 1999

Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis

Yaoqin Gong; Deborah Krakow; Jose Marcelino; Douglas J. Wilkin; David Chitayat; Riyana Babul-Hirji; Louanne Hudgins; C.W.R.J. Cremers; Frans P.M. Cremers; Han G. Brunner; Kent Reinker; David L. Rimoin; Daniel H. Cohn; Frances R. Goodman; William Reardon; Michael A. Patton; Clair A. Francomano; Matthew L. Warman

The secreted polypeptide noggin (encoded by the Nog gene) binds and inactivates members of the transforming growth factor β superfamily of signalling proteins (TGFβ-FMs), such as BMP4 (ref. 1). By diffusing through extracellular matrices more efficiently than TGFβ-FMs, noggin may have a principal role in creating morphogenic gradients. During mouse embryogenesis, Nog is expressed at multiple sites, including developing bones. Nog-/- mice die at birth from multiple defects that include bony fusion of the appendicular skeleton. We have identified five dominant human NOG mutations in unrelated families segregating proximal symphalangism (SYM1; OMIM 185800) and a de novo mutation in a patient with unaffected parents. We also found a dominant NOG mutation in a family segregating multiple synostoses syndrome (SYNS1; OMIM 186500); both SYM1 and SYNS1 have multiple joint fusion as their principal feature. All seven NOG mutations alter evolutionarily conserved amino acid residues. The findings reported here confirm that NOG is essential for joint formation and suggest that NOG requirements during skeletogenesis differ between species and between specific skeletal elements within species.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Dominance of SOX9 function over RUNX2 during skeletogenesis

Guang Zhou; Qiping Zheng; Feyza Engin; Elda Munivez; Yuqing Chen; Eiman Sebald; Deborah Krakow; Brendan Lee

Mesenchymal stem cell-derived osteochondroprogenitors express two master transcription factors, SOX9 and RUNX2, during condensation of the skeletal anlagen. They are essential for chondrogenesis and osteogenesis, respectively, and their haploinsufficiency causes human skeletal dysplasias. We show that SOX9 directly interacts with RUNX2 and represses its activity via their evolutionarily conserved high-mobility-group and runt domains. Ectopic expression of full-length SOX9 or its RUNX2-interacting domain in mouse osteoblasts results in an osteodysplasia characterized by severe osteopenia and down-regulation of osteoblast differentiation markers. Thus, SOX9 can inhibit RUNX2 function in vivo even in established osteoblastic lineage. Finally, we demonstrate that this dominant inhibitory function of SOX9 is physiologically relevant in human campomelic dysplasia. In campomelic dysplasia, haploinsufficiency of SOX9 results in up-regulation of the RUNX2 transcriptional target COL10A1 as well as all three members of RUNX gene family. In summary, SOX9 is dominant over RUNX2 function in mesenchymal precursors that are destined for a chondrogenic lineage during endochondral ossification.


American Journal of Human Genetics | 2010

Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta

Yasemin Alanay; Hrispima Avaygan; Natalia Camacho; G. Eda Utine; Koray Boduroglu; Dilek Aktas; Mehmet Alikasifoglu; Ergul Tuncbilek; Diclehan Orhan; Filiz Bakar; Bernard Zabel; Andrea Superti-Furga; Leena Bruckner-Tuderman; Cindy J.R. Curry; Shawna M. Pyott; Peter H. Byers; David R. Eyre; Dustin Baldridge; Brendan Lee; Amy E. Merrill; Elaine C. Davis; Daniel H. Cohn; Nurten Akarsu; Deborah Krakow

Osteogenesis imperfecta is a clinically and genetically heterogeneous brittle bone disorder that results from defects in the synthesis, structure, or posttranslational modification of type I procollagen. Dominant forms of OI result from mutations in COL1A1 or COL1A2, which encode the chains of the type I procollagen heterotrimer. The mildest form of OI typically results from diminished synthesis of structurally normal type I procollagen, whereas moderately severe to lethal forms of OI usually result from structural defects in one of the type I procollagen chains. Recessively inherited OI, usually phenotypically severe, has recently been shown to result from defects in the prolyl-3-hydroxylase complex that lead to the absence of a single 3-hydroxyproline at residue 986 of the alpha1(I) triple helical domain. We studied a cohort of five consanguineous Turkish families, originating from the Black Sea region of Turkey, with moderately severe recessively inherited OI and identified a novel locus for OI on chromosome 17. In these families, and in a Mexican-American family, homozygosity for mutations in FKBP10, which encodes FKBP65, a chaperone that participates in type I procollagen folding, was identified. Further, we determined that FKBP10 mutations affect type I procollagen secretion. These findings identify a previously unrecognized mechanism in the pathogenesis of OI.


Nature Genetics | 2004

Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis

Deborah Krakow; Stephen P. Robertson; Lily King; Timothy R. Morgan; Eiman Sebald; Cristina Bertolotto; Sebastian Wachsmann-Hogiu; Dora Acuna; Sandor S. Shapiro; Toshiro Takafuta; Salim Aftimos; Chong Ae Kim; Helen V. Firth; Carlos Eduardo Steiner; Valérie Cormier-Daire; Andrea Superti-Furga; Luisa Bonafé; John M. Graham; Arthur W. Grix; Carlos A. Bacino; Judith Allanson; Martin G Bialer; Ralph S. Lachman; David L. Rimoin; Daniel H. Cohn

The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.


Nature Genetics | 1998

Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse

Muhammad Faiyaz ul Haque; Lily King; Deborah Krakow; Rita M. Cantor; Michael E. Rusiniak; Richard T. Swank; Andrea Superti-Furga; Sayedul Haque; Hasan Abbas; Wasim Ahmad; Mahmud Ahmad; Daniel H. Cohn

The osteochondrodysplasias are a genetically heterogeneous group of disorders affecting skeletal development, linear growth and the maintenance of cartilage and bone. We have studied a large inbred Pakistani family with a distinct form of recessively inherited spondyloepimetaphyseal dysplasia (SEMD) and mapped a gene associated with this dwarfing condition to chromosome 10q23–24, a region syntenic with the locus for the brachymorphic mutation on mouse chromosome 19. We identified two orthologous genes, ATPSK2 and Atpsk2, encoding novel ATP sulfurylase/APS kinase orthologues in the respective regions of the human and mouse genomes. We characterized a nonsense mutation in ATPSK2 in the SEMD family and a missense mutation in the region of Atpsk2 encoding the APS kinase activity in the brachymorphic mouse. ATP sulfurylase/APS kinase catalyses the metabolic activation of inorganic sulfate to PAPS, the universal donor for post-translational protein sulfation in all cell types. The cartilage-specificity of the human and mouse phenotypes provides further evidence of the critical role of sulfate activation in the maturation of cartilage extracellular matrix molecules and the effect of defects in this process on the architecture of cartilage and skeletogenesis.


Human Mutation | 2008

CRTAP AND LEPRE1 MUTATIONS IN RECESSIVE OSTEOGENESIS IMPERFECTA

Dustin Baldridge; Ulrike Schwarze; Roy Morello; Jennifer Lennington; Terry Bertin; James M. Pace; Melanie Pepin; MaryAnn Weis; David R. Eyre; Jennifer Walsh; Deborah M Lambert; Andrew Green; Haynes Robinson; Melonie Michelson; Gunnar Houge; Carl Lindman; Judith Martin; Jewell C. Ward; Emmanuelle Lemyre; John J. Mitchell; Deborah Krakow; David L. Rimoin; Daniel H. Cohn; Peter H. Byers; Brendan Lee

Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple‐helical domains of type I collagen α1(I) and type II collagen α1(II) chains has been implicated in the pathogenesis of recessive forms of OI. Two proteins, cartilage‐associated protein (CRTAP) and prolyl‐3‐hydroxylase‐1 (P3H1, encoded by the LEPRE1 gene) form a complex that performs the hydroxylation and brings the prolyl cis‐trans isomerase cyclophilin‐B (CYPB) to the unfolded collagen. In our screen of 78 subjects diagnosed with OI type II or III, we identified three probands with mutations in CRTAP and 16 with mutations in LEPRE1. The latter group includes a mutation in patients from the Irish Traveller population, a genetically isolated community with increased incidence of OI. The clinical features resulting from CRTAP or LEPRE1 loss of function mutations were difficult to distinguish at birth. Infants in both groups had multiple fractures, decreased bone modeling (affecting especially the femurs), and extremely low bone mineral density. Interestingly, “popcorn” epiphyses may reflect underlying cartilaginous and bone dysplasia in this form of OI. These results expand the range of CRTAP/LEPRE1 mutations that result in recessive OI and emphasize the importance of distinguishing recurrence of severe OI of recessive inheritance from those that result from parental germline mosaicism for COL1A1 or COL1A2 mutations. Hum Mutat 0, 1–8, 2008.


The New England Journal of Medicine | 2013

WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta

Christine M. Laine; Kyu Sang Joeng; Philippe M. Campeau; Riku Kiviranta; Kati Tarkkonen; Monica Grover; James T. Lu; Minna Pekkinen; Maija Wessman; Terhi J. Heino; Vappu Nieminen-Pihala; Mira Aronen; Tero Laine; Heikki Kröger; William G. Cole; Anna-Elina Lehesjoki; Lisette Nevarez; Deborah Krakow; Cynthia J. Curry; Daniel H. Cohn; Richard A. Gibbs; Brendan Lee; Outi Mäkitie

This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T→G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C→A, p.Ser295*. In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.


American Journal of Human Genetics | 2009

Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia

Deborah Krakow; Joris Vriens; Natalia Camacho; Phi Luong; Hannah Deixler; Tara L. Funari; Carlos A. Bacino; Mira Irons; Ingrid A. Holm; Laurie S. Sadler; Ericka Okenfuss; Annelies Janssens; Thomas Voets; David L. Rimoin; Ralph S. Lachman; Bernd Nilius; Daniel H. Cohn

The spondylometaphyseal dysplasias (SMDs) are a group of short-stature disorders distinguished by abnormalities in the vertebrae and the metaphyses of the tubular bones. SMD Kozlowski type (SMDK) is a well-defined autosomal-dominant SMD characterized by significant scoliosis and mild metaphyseal abnormalities in the pelvis. The vertebrae exhibit platyspondyly and overfaced pedicles similar to autosomal-dominant brachyolmia, which can result from heterozygosity for activating mutations in the gene encoding TRPV4, a calcium-permeable ion channel. Mutation analysis in six out of six patients with SMDK demonstrated heterozygosity for missense mutations in TRPV4, and one mutation, predicting a R594H substitution, was recurrent in four patients. Similar to autosomal-dominant brachyolmia, the mutations altered basal calcium channel activity in vitro. Metatropic dysplasia is another SMD that has been proposed to have both clinical and genetic heterogeneity. Patients with the nonlethal form of metatropic dysplasia present with a progressive scoliosis, widespread metaphyseal involvement of the appendicular skeleton, and carpal ossification delay. Because of some similar radiographic features between SMDK and metatropic dysplasia, TRPV4 was tested as a disease gene for nonlethal metatropic dysplasia. In two sporadic cases, heterozygosity for de novo missense mutations in TRPV4 was found. The findings demonstrate that mutations in TRPV4 produce a phenotypic spectrum of skeletal dysplasias from the mild autosomal-dominant brachyolmia to SMDK to autosomal-dominant metatropic dysplasia, suggesting that these disorders should be grouped into a new bone dysplasia family.

Collaboration


Dive into the Deborah Krakow's collaboration.

Top Co-Authors

Avatar

Daniel H. Cohn

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Rimoin

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Duran

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiman Sebald

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge