Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah L. Stone is active.

Publication


Featured researches published by Deborah L. Stone.


The New England Journal of Medicine | 2009

An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist

Ivona Aksentijevich; Seth L. Masters; Polly J. Ferguson; Paul Dancey; Joost Frenkel; Annet van Royen-Kerkhoff; Ron Laxer; Ulf Tedgård; Edward W. Cowen; Tuyet-Hang Pham; Matthew G. Booty; Jacob D. Estes; Netanya G. Sandler; Nicole Plass; Deborah L. Stone; Maria L. Turner; Suvimol Hill; Rayfel Schneider; Paul Babyn; Hatem El-Shanti; Elena Pope; Karyl S. Barron; Xinyu Bing; Arian Laurence; Chyi-Chia R. Lee; Dawn Chapelle; Gillian I. Clarke; Kamal Ohson; Marc Nicholson; Massimo Gadina

BACKGROUND Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. METHODS We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. RESULTS We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. CONCLUSIONS We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.)


The New England Journal of Medicine | 2014

Early-onset stroke and vasculopathy associated with mutations in ADA2

Qing Zhou; Dan Yang; Amanda K. Ombrello; Andrey Zavialov; Camilo Toro; Anton V. Zavialov; Deborah L. Stone; Jae Jin Chae; Sergio D. Rosenzweig; Kevin Bishop; Karyl S. Barron; Hye Sun Kuehn; Patrycja Hoffmann; Alejandra Negro; Wanxia L. Tsai; Edward W. Cowen; Wuhong Pei; Joshua D. Milner; Christopher Silvin; Theo Heller; David T. Chin; Nicholas J. Patronas; John S. Barber; Chyi-Chia R. Lee; Geryl Wood; Alexander Ling; Susan J. Kelly; David E. Kleiner; James C. Mullikin; Nancy J. Ganson

BACKGROUND We observed a syndrome of intermittent fevers, early-onset lacunar strokes and other neurovascular manifestations, livedoid rash, hepatosplenomegaly, and systemic vasculopathy in three unrelated patients. We suspected a genetic cause because the disorder presented in early childhood. METHODS We performed whole-exome sequencing in the initial three patients and their unaffected parents and candidate-gene sequencing in three patients with a similar phenotype, as well as two young siblings with polyarteritis nodosa and one patient with small-vessel vasculitis. Enzyme assays, immunoblotting, immunohistochemical testing, flow cytometry, and cytokine profiling were performed on samples from the patients. To study protein function, we used morpholino-mediated knockdowns in zebrafish and short hairpin RNA knockdowns in U937 cells cultured with human dermal endothelial cells. RESULTS All nine patients carried recessively inherited mutations in CECR1 (cat eye syndrome chromosome region, candidate 1), encoding adenosine deaminase 2 (ADA2), that were predicted to be deleterious; these mutations were rare or absent in healthy controls. Six patients were compound heterozygous for eight CECR1 mutations, whereas the three patients with polyarteritis nodosa or small-vessel vasculitis were homozygous for the p.Gly47Arg mutation. Patients had a marked reduction in the levels of ADA2 and ADA2-specific enzyme activity in the blood. Skin, liver, and brain biopsies revealed vasculopathic changes characterized by compromised endothelial integrity, endothelial cellular activation, and inflammation. Knockdown of a zebrafish ADA2 homologue caused intracranial hemorrhages and neutropenia - phenotypes that were prevented by coinjection with nonmutated (but not with mutated) human CECR1. Monocytes from patients induced damage in cocultured endothelial-cell layers. CONCLUSIONS Loss-of-function mutations in CECR1 were associated with a spectrum of vascular and inflammatory phenotypes, ranging from early-onset recurrent stroke to systemic vasculopathy or vasculitis. (Funded by the National Institutes of Health Intramural Research Programs and others.).


American Journal of Human Genetics | 2000

Analysis and Classification of 304 Mutant Alleles in Patients with Type 1 and Type 3 Gaucher Disease

Vuk Koprivica; Deborah L. Stone; Joseph K. Park; Megan Callahan; Amos Frisch; Ian J. Cohen; Nahid Tayebi; Ellen Sidransky

Gaucher disease results from the inherited deficiency of the enzyme glucocerebrosidase (EC 3.2.1.45). Although >100 mutations in the gene for human glucocerebrosidase have been described, most genotype-phenotype studies have focused upon screening for a few common mutations. In this study, we used several approaches-including direct sequencing, Southern blotting, long-template PCR, restriction digestions, and the amplification refraction mutation system (ARMS)-to genotype 128 patients with type 1 Gaucher disease (64 of Ashkenazi Jewish ancestry and 64 of non-Jewish extraction) and 24 patients with type 3 Gaucher disease. More than 97% of the mutant alleles were identified. Fourteen novel mutations (A90T, N117D, T134I, Y135X, R170C, W184R, A190T, Y304X, A341T, D399Y, c.153-154insTACAGC, c.203-204insC, c.222-224delTAC, and c.1122-1123insTG) and many rare mutations were detected. Recombinant alleles were found in 19% of the patients. Although 93% of the mutant alleles in our Ashkenazi Jewish type 1 patients were N370S, c.84-85insG, IVS2+1G-->A or L444P, these four mutations accounted for only 49% of mutant alleles in the non-Jewish type 1 patients. Genotype-phenotype correlations were attempted. Homozygosity or heterozygosity for N370S resulted in type 1 Gaucher disease, whereas homozygosity for L444P was associated with type 3. Genotype L444P/recombinant allele resulted in type 2 Gaucher disease, and homozygosity for a recombinant allele was associated with perinatal lethal disease. The phenotypic consequences of other mutations, particularly R463C, were more inconsistent. Our results demonstrate a high rate of mutation detection, a large number of novel and rare mutations, and an accurate assessment of the prevalence of recombinant alleles. Although some genotype-phenotype correlations do exist, other genetic and environmental factors must also contribute to the phenotypes encountered, and we caution against relying solely upon genotype for prognostic or therapeutic judgements.


Nature Genetics | 2000

Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome.

Deborah L. Stone; Anne Slavotinek; Gerard G. Bouffard; Sharmila Banerjee-Basu; Andreas D. Baxevanis; Mason Barr; Leslie G. Biesecker

McKusick-Kaufman syndrome (MKKS, MIM 236700) is a human developmental anomaly syndrome comprising hydrometrocolpos (HMC), postaxial polydactyly (PAP) and congenital heart disease (CHD). MKKS has been mapped in the Old Order Amish population to 20p12, between D20S162 and D20S894 (ref. 3). Here we describe the identification of a gene mutated in MKKS. We analysed the approximately 450-kb candidate region by sample sequencing, which revealed the presence of several known genes and EST clusters. We evaluated candidate transcripts by northern-blot analysis of adult and fetal tissues. We selected one transcript with widespread expression, MKKS, for analysis in a patient from the Amish pedigree and a sporadic, non-Amish case. The Old Order Amish patient was found to be homozygous for an allele that had two missense substitutions and the non-Amish patient was a compound heterozygote for a frameshift mutation predicting premature protein truncation and a distinct missense mutation. The MKKS predicted protein shows amino acid similarity to the chaperonin family of proteins, suggesting a role for protein processing in limb, cardiac and reproductive system development. We believe that this is the first description of a human disorder caused by mutations affecting a putative chaperonin molecule.


Human Mutation | 2000

Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease

Deborah L. Stone; Nahid Tayebi; Eduard Orvisky; Barbara K. Stubblefield; Victor Madike; Ellen Sidransky

Gaucher disease, the most common lysosomal storage disorder, results from the inherited deficiency of the enzyme glucocerebrosidase. Three clinical types are recognized: type 1, non‐neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. Type 2 Gaucher disease, the rarest type, is progressive and fatal. We have performed molecular analyses of a cohort of 31 patients with type 2 Gaucher disease. The cases studied included fetuses presenting prenatally with hydrops fetalis, infants with the collodion baby phenotype, and infants diagnosed after several months of life. All 62 mutant glucocerebrosidase (GBA) alleles were identified. Thirty‐three different mutant alleles were found, including point mutations, splice junction mutations, deletions, fusion alleles and recombinant alleles. Eleven novel mutations were identified in these patients: R131L, H255Q, R285H, S196P, H311R, c.330delA, V398F, F259L, c.533delC, Y304C and A190E. Mutation L444P was found on 25 patient alleles. Southern blots and direct sequencing demonstrated that mutation L444P occurred alone on 9 alleles, with E326K on one allele and as part of a recombinant allele on 15 alleles. There were no homozygotes for point mutation L444P. The recombinant alleles that included L444P resulted from either reciprocal recombination or gene conversion with the nearby glucocerebrosidase pseudogene, and seven different sites of recombination were identified. Homozygosity for a recombinant allele was associated with early lethality. We have also summarized the literature describing mutations associated with type 2 disease, and list 50 different mutations. This report constitutes the most comprehensive molecular study to date of type 2 Gaucher disease, and it demonstrates that there is significant phenotypic and genotypic heterogeneity among patients with type 2 Gaucher disease. Hum Mutat 15:181–188, 2000. Published 2000 Wiley‐Liss, Inc.


Nature Genetics | 2016

Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease

Qing Zhou; Hongying Wang; Daniella M. Schwartz; Monique Stoffels; Yong Hwan Park; Yuan Zhang; Dan Yang; Erkan Demirkaya; Masaki Takeuchi; Wanxia Li Tsai; Jonathan J. Lyons; Xiaomin Yu; Claudia Ouyang; Celeste Chen; David T. Chin; Kristien Zaal; Settara C. Chandrasekharappa; Eric P. Hanson; Zhen Yu; James C. Mullikin; Sarfaraz Hasni; Ingrid E Wertz; Amanda K. Ombrello; Deborah L. Stone; Patrycja Hoffmann; Anne Jones; Beverly Barham; Helen L. Leavis; Annet van Royen-Kerkof; Cailin Sibley

Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçets disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB–mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB–dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.


Arthritis & Rheumatism | 2012

Sustained Response and Prevention of Damage Progression in Patients With Neonatal-Onset Multisystem Inflammatory Disease Treated With Anakinra: A Cohort Study to Determine Three- and Five-Year Outcomes

Cailin Sibley; Nikki Plass; Joseph Snow; Edythe Wiggs; Carmen C. Brewer; Kelly A. King; Christopher Zalewski; H. Jeffrey Kim; Rachel J. Bishop; Suvimol Hill; Scott M. Paul; Patrick Kicker; Zachary Phillips; Joseph G. Dolan; Brigitte C. Widemann; Nalini Jayaprakash; Frank Pucino; Deborah L. Stone; Dawn Chapelle; Christopher Snyder; Robert Wesley; Raphaela Goldbach-Mansky

OBJECTIVE Blocking interleukin-1 with anakinra in patients with the autoinflammatory syndrome neonatal-onset multisystem inflammatory disease (NOMID) reduces systemic and organ-specific inflammation. However, the impact of long-term treatment has not been established. This study was undertaken to evaluate the long-term effect of anakinra on clinical and laboratory outcomes and safety in patients with NOMID. METHODS We conducted a cohort study of 26 NOMID patients ages 0.80-42.17 years who were followed up at the NIH and treated with anakinra 1-5 mg/kg/day for at least 36 months. Disease activity was assessed using daily diaries, questionnaires, and C-reactive protein level. Central nervous system (CNS) inflammation, hearing, vision, and safety were evaluated. RESULTS Sustained improvements in diary scores, parents/patients and physicians global scores of disease activity, parents/patients pain scores, and inflammatory markers were observed (all P<0.001 at 36 and 60 months). At 36 and 60 months, CNS inflammation was suppressed, with decreased cerebrospinal fluid white blood cell counts (P=0.0026 and P=0.0076, respectively), albumin levels, and opening pressures (P=0.0012 and P<0.001, respectively). Most patients showed stable or improved hearing. Cochlear enhancement on magnetic resonance imaging correlated with continued hearing loss. Visual acuity and peripheral vision were stable. Low optic nerve size correlated with poor visual field. Bony lesions progressed. Adverse events other than viral infections were rare, and all patients continued to receive the medication. CONCLUSION These findings indicate that anakinra provides sustained efficacy in the treatment of NOMID for up to 5 years, with the requirement of dose escalation. Damage progression in the CNS, ear, and eye, but not bone, is preventable. Anakinra is well tolerated overall.


Journal of Clinical Investigation | 2015

Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

Anja Brehm; Yin Liu; Afzal Sheikh; Bernadette Marrero; Ebun Omoyinmi; Qing Zhou; Gina Montealegre; Angélique Biancotto; Adam Reinhardt; Adriana A. Jesus; Martin Pelletier; Wanxia L. Tsai; Elaine F. Remmers; Lela Kardava; Suvimol Hill; Hanna Kim; Helen J. Lachmann; André Mégarbané; Jae Jin Chae; Jilian Brady; Rhina D. Castillo; Diane Brown; Angel Vera Casano; Ling Gao; Dawn Chapelle; Yan Huang; Deborah L. Stone; Yongqing Chen; Franziska Sotzny; Chyi-Chia Richard Lee

Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease

Qing Zhou; Xiaomin Yu; Erkan Demirkaya; Natalie Deuitch; Deborah L. Stone; Wanxia Li Tsai; Hye Sun Kuehn; Hongying Wang; Dan Yang; Yong Hwan Park; Amanda K. Ombrello; Mary E. Blake; Tina Romeo; Elaine F. Remmers; Jae Jin Chae; James C. Mullikin; Ferhat Güzel; Joshua D. Milner; Manfred Boehm; Sergio D. Rosenzweig; Massimo Gadina; Steven B. Welch; Seza Ozen; Rezan Topaloglu; Mario Abinun; Daniel L. Kastner; Ivona Aksentijevich

Significance We describe a human disease linked to mutations in the linear deubiquitinase (DUB) OTULIN, which functions as a Met1-specific DUB to remove linear polyubiquitin chains that are assembled by the linear ubiquitin assembly complex (LUBAC). OTULIN has a role in regulating Wnt and innate immune signaling complexes. Hydrolysis of Met1-linked ubiquitin chains attenuates inflammatory signals in the NF-κB and ASC-mediated pathways. OTULIN-deficient patients have excessive linear ubiquitination of target proteins, such as NEMO, RIPK1, TNFR1, and ASC, leading to severe inflammation. Cytokine inhibitors have been efficient in suppressing constitutive inflammation in these patients. This study, together with the identification of haploinsufficiency of A20 (HA20), suggests a category of human inflammatory diseases, diseases of dysregulated ubiquitination. Systemic autoinflammatory diseases are caused by mutations in genes that function in innate immunity. Here, we report an autoinflammatory disease caused by loss-of-function mutations in OTULIN (FAM105B), encoding a deubiquitinase with linear linkage specificity. We identified two missense and one frameshift mutations in one Pakistani and two Turkish families with four affected patients. Patients presented with neonatal-onset fever, neutrophilic dermatitis/panniculitis, and failure to thrive, but without obvious primary immunodeficiency. HEK293 cells transfected with mutated OTULIN had decreased enzyme activity relative to cells transfected with WT OTULIN, and showed a substantial defect in the linear deubiquitination of target molecules. Stimulated patients’ fibroblasts and peripheral blood mononuclear cells showed evidence for increased signaling in the canonical NF-κB pathway and accumulated linear ubiquitin aggregates. Levels of proinflammatory cytokines were significantly increased in the supernatants of stimulated primary cells and serum samples. This discovery adds to the emerging spectrum of human diseases caused by defects in the ubiquitin pathway and suggests a role for targeted cytokine therapies.


European Journal of Human Genetics | 1999

Is the perinatal lethal form of Gaucher disease more common than classic type 2 Gaucher disease

Deborah L. Stone; Otto P. van Diggelen; Johannis B. C. de Klerk; Johannes Lj Gaillard; M. F. Niermeijer; Rob Willemsen; Nahid Tayebi; Ellen Sidransky

In recent years there has been increased recognition of a severe perinatal lethal form of Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase. We previously reported a case of severe type 2 Gaucher disease which was seen in a medical center in Rotterdam and now present three new cases from two other families seen at the same center. Mutational analyses of these cases revealed two novel mutations, H311R and V398F, located in exons 8 and 9, respectively. The identification of four cases of lethal type 2 Gaucher disease in a single center seems to be a function of increased awareness of this phenotype, rather than of geographic clustering. The actual incidence of lethal type 2 Gaucher disease may be underestimated, as many cases may have been misclassified as collodion babies or hydrops of unknown cause.

Collaboration


Dive into the Deborah L. Stone's collaboration.

Top Co-Authors

Avatar

Daniel L. Kastner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amanda K. Ombrello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivona Aksentijevich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patrycja Hoffmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karyl S. Barron

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dawn Chapelle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ellen Sidransky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jae Jin Chae

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nahid Tayebi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge