Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah M. Hinton is active.

Publication


Featured researches published by Deborah M. Hinton.


Gene regulation and systems biology | 2007

Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters

India Hook-Barnard; Deborah M. Hinton

In order to investigate the possible mechanisms for eve stripe formation of Drosophila embryo, a spatio-temporal gene/protein interaction network model is proposed to mimic dynamic behaviors of protein synthesis, protein decay, mRNA decay, protein diffusion, transcription regulations and autoregulation to analyze the interplay of genes and proteins at different compartments in early embryogenesis. In this study, we use the maximum likelihood (ML) method to identify the stochastic 3-D Embryo Space-Time (3-DEST) dynamic model for gene/protein interaction network via 3-D mRNA and protein expression data and then use the Akaike Information Criterion (AIC) to prune the gene/protein interaction network. The identified gene/protein interaction network allows us not only to analyze the dynamic interplay of genes and proteins on the border of eve stripes but also to infer that eve stripes are established and maintained by network motifs built by the cooperation between transcription regulations and diffusion mechanisms in early embryogenesis. Literature reference with the wet experiments of gene mutations provides a clue for validating the identified network. The proposed spatio-temporal dynamic model can be extended to gene/protein network construction of different biological phenotypes, which depend on compartments, e.g. postnatal stem/progenitor cell differentiation.Vertebrae and other mammalian repetitive structures are formed from embryonic organs called somites. Somites arise sequentially from the unsegmented presomitic mesoderm (PSM). In mice, a new bilateral pair of somites arise every two hours from the rostral PSM. On the other hand, cells are added to the caudal side of the PSM due to cell proliferation of the tail bud. Somite formation correlates with cycles of cell-autonomous expression in the PSM of genes like Hes7. Because the somitogenesis is a highly dynamic and coordinated process, this event has been subjected to extensive theoretical modeling. Here, we describe the current understanding about the somitogenesis in mouse embryos with an emphasis on insights gained from computer simulations. It is worth noting that the combination of experiments and computer simulations has uncovered dynamical properties of the somitogenesis clock such as the transcription/translation delays, the half-life and the synchronization mechanism across the PSM. Theoretical models have also been useful to provide predictions and rigorous hypothesis about poorly understood processes such as the mechanisms by which the temporal PSM oscillations are arrested and converted into an spatial pattern. We aim at reviewing this theoretical literature in such a way that experimentalists might appreciate the resulting conclusions.Background Previous studies demonstrated that the vascular endothelial growth factor (VEGF) was being implicated in the airways inflammation and remodeling process in patients with asthma. Aims We explored the relationship of three polymorphisms in the VEGF gene with asthma in both case control and family studies. Methods We Genotyped a total of 210 children with asthma, 224 unrelated controls and 160 parents for the +936 C >T (rs3025039), −634 G > C (rs2010963) and −2549 −2567 del 18 of the VEGF promoter region. The Mutations were identified with polymerase chain reaction followed by restriction fragment length polymorphism (RFLP) analysis for the +936 C > T, and −634 G > C polymorphisms. Results Of the three polymorphisms studied, a borderline association with asthma was found for the G allele in the −634 G > C polymorphism (p = 0.059). No Statistically significant differences were observed for both +936 C > T, and −2549 −2567 del 18 polymorphisms between asthmatic patients and controls, considering either allelic or genotypic frequencies. The distribution of genotypes according to the severity status revealed a significant differences for the +936 C > T, and −2549 −2567 del 18 polymorphisms. In addition, association was found with the haplotypes inferred by the three polymorphisms and asthma susceptibility. Conclusion We suggest that VEGF Gene polymorphisms can be implicated in asthma.Insulin sensitizing thiazolidinediones (TZDs) are generally considered to work as agonists for the nuclear receptor peroxisome proliferative activated receptor-gamma (PPARγ). However, TZDs also have acute, non-genomic metabolic effects and it is unclear which actions are responsible for the beneficial pharmacology of these compounds. We have taken advantage of an analog, based on the metabolism of pioglitazone, which has much reduced ability to activate PPARγ. This analog (PNU-91325) was compared to rosiglitazone, the most potent PPARγ activator approved for human use, in a variety of studies both in vitro and in vivo. The data demonstrate that PNU-91325 is indeed much less effective than rosiglitazone at activating PPARγ both in vitro and in vivo. In contrast, both compounds bound similarly to a mitochondrial binding site and acutely activated PI-3 kinase-directed phosphorylation of AKT, an action that was not affected by elimination of PPARγ activation. The two compounds were then compared in vivo in both normal C57 mice and diabetic KKAy mice to determine whether their pharmacology correlated with biomarkers of PPARγ activation or with the expression of other gene transcripts. As expected from previous studies, both compounds improved insulin sensitivity in the diabetic mice, and this occurred in spite of the fact that there was little increase in expression of the classic PPARγ target biomarker adipocyte binding protein-2 (aP2) with PNU-91325 under these conditions. An examination of transcriptional profiling of key target tissues from mice treated for one week with both compounds demonstrated that the relative pharmacology of the two thiazolidinediones correlated best with an increased expression of an array of mitochondrial proteins and with expression of PPARγ coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis. Thus, important pharmacology of the insulin sensitizing TZDs may involve acute actions, perhaps on the mitochondria, that are independent of direct activation of the nuclear receptor PPARγ. These findings suggest a potential alternative route to the discovery of novel insulin sensitizing drugs.The trans-regulatory circuit is considered as the regulatory interactions between upstream regulatory genes and transcription factor binding site motifs or cis elements. And the cis-regulatory circuit is viewed as a dynamic interactive circuit among binding site motifs with their effective action on the expression scheme of target gene. In brief, gene transcription depends on the trans/cis regulatory circuits. In this study, nonlinear trans/cis regulatory circuits for gene transcription in yeast are constructed using microarray data, translation time delay, and information of transcription factors (TFs) binding sites. We provide a useful nonlinear dynamic modeling and develop a parameter estimating method for the construction of trans/cis regulatory circuits, which is powerful for understanding gene transcription. We apply our method to construct trans/cis regulatory circuits of yeast cell cycle-related genes and successfully quantify their regulatory abilities and find possible cis-element interactions. Not only could the data of yeast be applied by our method, but those of other species also could. The proposed method can provide a quantitative basis for system analysis of gene circuits, which is potential for gene regulatory circuit design with a desired gene expression.The signal peptide of the luciferase secreted by the marine copepod Gaussia princeps has been shown to promote high-level protein synthesis/secretion of recombinant proteins, being far superior to mammalian counterparts. The main aim of the present study was to investigate the effects of seven selected signal peptides derived from oikosins, house proteins of the marine organism Oikopleura dioica, on synthesis/secretion of recombinant proteins. Vector constructs were made in which the coding regions of two naturally secreted proteins, Gaussia luciferase and human endostatin (hEndostatin), were “seamlessly” fused to the signal peptide coding sequences of interest. CHO cells were transfected with the plasmids and populations of stably transfected cells established. The amounts of reporter proteins in cell extract and medium samples were determined and the results compared to those obtained from cells stably transfected with a reference vector construct. In addition, the amounts of luciferase or hEndostatin encoding mRNAs in the cells were determined and related to the protein levels obtained. The levels of reporter protein produced varied greatly among the seven oikosin signal peptides tested. Whereas the oikosin 1 signal peptide resulted in about 40% production of Gaussia luciferase compared to the reference construct, oikosins 2–7 were extremely ineffective (<1%). mRNA levels were not dramatically affected such that inadequate availability of transcript for translation was not the underlying reason for the observations. The oikosin 1 signal peptide was also the most effective regarding synthesis/secretion of hEndostatin. No secreted product was observed using the oikosin 3 signal peptide. Interestingly, the molecular weight of hEndostatin in cell extracts prepared from cells transfected with oikosin 2 and 3 constructs was higher than that using the oikosin 1 signal peptide. The overall findings indicate that the signal peptide affects the efficiency of protein synthesis and secretion through a mechanism operating at the post-transcriptional level. The results described here provide substantial support to our previous observations which suggested that the choice of the signal peptide is imperative when aiming to achieve optimal synthesis and secretion of a recombinant protein using transfected mammalian cells.Integrins have been proposed to play a major role in lens morphogenesis. To determine the role of β1-integrin and its down-stream signaling partner, integrin linked kinase (ILK), in lens morphogenesis, eyes of WT mice and mice with a nestin-linked conditional knockout of β1-integrin or ILK were analyzed for defects in lens development. Mice, lacking the genes encoding the β1-integrin subunit (Itgb1) or ILK (Ilk), showed a perinatal degeneration of the lens. Early signs of lens degeneration included vacuolization, random distribution of lens cell nuclei, disrupted fiber morphology and attenuation and separation of the lens capsule. The phenotype became progressively more severe during the first postnatal week eventually leading to the complete loss of the lens. A more severe phenotype was observed in ILK mutants at similar stages. Eyes from embryonic day 13 β1-integrin-mutant embryos showed no obvious signs of lens degeneration, indicating that mutant lens develops normally until peri-recombination. Our findings suggest that β1-integrins and ILK cooperate to control lens cell survival and link lens fibers to the surrounding extracellular matrix. The assembly and integrity of the lens capsule also appears to be reliant on integrin signaling within lens fibers. Extrapolation of these results indicates a novel role of integrins in lens cell-cell adhesions as well as a potential role in the pathogenesis of congenital cataracts.Resistance to radio and chemotherapy is one of the major drawbacks in the progression of head and neck squamous cell cancer (HNSCC) patients, evidencing the importance of finding optimum molecular prognosis markers to develop personalized treatment schedules. TGF-β effector TAK1 activity has been related to a greater aggressiveness in several types of cancer (Kondo et al. 1998; Edlund et al. 2003; Kaur et al. 2005) and, although there has been described no significant implication of TAK1 in HNSCC development, we have further examined the role of its mRNA expression as a marker of prognosis in HNSCC. Fifty-nine advanced HNSCC patients were recruited for the study. The tumor expression of TAK1 mRNA was analyzed with RT-PCR using Taqman technology and its relationship with the clinical outcome of the patients studied. TAK1 mRNA expression was lower in patients that relapsed than in those that did not, but the difference was only significant between the patients that showed response to treatment (p < 0.001). ROC curve analyses pointed a 0.5 expression ratio TAK1/B2M value as an optimum cut-off point for relapse and response. Our data suggest the TAK1 mRNA analysis by Taqman RT-PCR can predict the risk of relapse in HNSCC patients.In microarray studies several statistical methods have been proposed with the purpose of identifying differentially expressed genes in two varieties. A commonly used method is an analysis of variance model where only the effect of interaction between variety and gene is tested. In this paper we argue that in addition to the interaction effects, the main effect of variety should simultaneously also be taken into account when posting the hypothesis.Prostanoids have a broad spectrum of biological activities in a variety of organs including the brain. However, their effects on synaptic plasticity in the brain, which have been recently revealed, are ambiguous in comparison to those in the other organs. Prostaglandin E2 (PGE2) is a prostanoid produced from arachidonic acid in the cellular membrane, and knowledge about its functions is increasing. Recently, a novel function of PGE2 in the brain has shed light on aspects of synaptic plasticity such as long-term potentiation (LTP). More recently, we have proposed a hypothesis for the mechanisms of this PGE2-related form of synaptic plasticity in the visual cortex. This involves the dynamics of two subtypes of PGE2 receptors that have opposing functions in intracellular signal transduction. Consequently, mechanisms that increase the level of cyclic AMP in the cytosol may explain for the mechanisms of LTP in the visual cortex. The current notion of bidirectional trafficking of PGE2 receptors under this hypothesis is reminiscent of the “silent synapse” mechanism of LTP on the trafficking of the AMPA receptors between the membrane and cytosol. Moreover, we propose the hypothesis that PGE2 acts as a “post-to-postsynaptic messenger” for the induction of LTP in the visual cortex. This review describes a complex mode of action of PGE2 receptors in synaptic plasticity in the brain.Purpose The present study predicts and tests genetic networks that modulate gene expression during the retinal wound-healing response. Methods Upstream modulators and target genes were defined using meta-analysis and bioinformatic approaches. Quantitative trait loci (QTLs) for retinal acute phase genes (Vazquez-Chona et al. 2005) were defined using QTL analysis of CNS gene expression (Chesler et al. 2005). Candidate modulators were defined using computational analysis of gene and motif sequences. The effect of candidate genes on wound healing was tested using animal models of gene expression. Results A network of early wound-healing genes is modulated by a locus on chromosome 12. The genetic background of the locus altered the wound-healing response of the retina. The C57BL/6 allele conferred enhanced expression of neuronal marker Thy1 and heat-shock-like crystallins, whereas the DBA/2J allele correlated with greater levels of the classic marker of retinal stress, glial fibrillary acidic protein (GFAP). Id2 and Lpin1 are candidate upstream modulators as they strongly correlated with the segregation of DBA/2J and C57BL/6 alleles, and their dosage levels correlated with the enhanced expression of survival genes (Thy1 and crystallin genes). Conclusion We defined a genetic network associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and can didate modulators that control transcript levels of acute phase genes. Our results support the convergence of gene expression profiling, QTL analysis, and bioinformatics as a rational approach to discover molecular pathways controlling retinal wound healing.Introduction advent of molecular biology caused a reductionist “fever” to spread throughout the biological research community that continues to this day. The new molecular insights and techniques enabled researchers to probe the constituent parts of complex biological systems at unprecedented scale and detail. The reductionist approach naturally emerged: if we could now isolate and study the component parts of a system, we should be able to synthesize the information about the individual components into a unifi ed understanding of the whole system. However, this “naive reductionism” (Bloom, 2001) needs to be balanced with a systems approach for a simple reason: the complex dynamics of a biological system often produce behaviors and properties that cannot be explained by the presence of a single component, but rather emerge from the interactions of the components of the system (so-called emergentThe aromatic hydrocarbon receptor (AhR) mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA micorarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19) of the mouse hepatoma cell line Hepa1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhR-defective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells.With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.Bacterial RNA polymerase is composed of a core of subunits (β, β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the −10 element, the extended −10 (TGn) element, the −35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position −5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the −35 elements (−35TTGACA−30), and the extended −10 (−15TGn−13) are recognized as double-stranded binding elements, whereas the −5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the −10 element (−12TATAAT−7) is recognized as both double-stranded DNA for the T:A bp at position −12 and as nontemplate, single-stranded DNA from positions −11 to −7. The single-stranded sequences at positions −11 to −7 as well as the −5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.To perform a quantitative analysis with gene-arrays, one must take into account inaccuracies (experimental variations, biological variations and other measurement errors) which are seldom known. In this paper we investigated amplification and noise propagation related errors by measuring intensity dependent variations. Based on a set of control samples, we create confidence intervals for up and down regulations. We validated our method through a qPCR experiment and compared it to standard analysis methods (including loess normalization and filtering methods based on genetic variability). The results reveal that amplification related errors are a major concern.Fanconi anemia (FA) is an autosomal recessive disorder characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. At least eleven members of the FA gene family have been identified using complementation experiments. Ubiquitin-proteasome has been shown to be a key regulator of FA proteins and their involvement in the repair of DNA damage. Here, we identified a novel functional link between the FA/BRCA pathway and E2F-mediated cell cycle regulome. In silico mining of a transcriptome database and promoter analyses revealed that a significant number of FA gene members were regulated by E2F transcription factors, known to be pivotal regulators of cell cycle progression – as previously described for BRCA1. Our findings suggest that E2Fs partly determine cell fate through the FA/BRCA pathway.Microchimerism refers to the status of harboring cells from another individual at low levels. It is well known that cells traffic bidirectionally between fetus and mother during pregnancy. This situation resembles a naturally occurring long lasting fetal stem cell transplantation. The fetus acts as the donor and the mother acts as the recipient. To study the role of microchimerism in tissue regeneration, we constructed a murine microchimerism model with wild type C57BL/6J female mice carrying progenies which expressed green fluorescent proteins (GFP). Our data indicated that skin injuries in the female mice during pregnancy increased microchimerism of GFP expressing cells from the GFP transgenic progenies. The GFP positive cells also appeared at the site of spinal cord where injury occurred during pregnancy. Our study suggests that the amount of fetal cells in maternal mice significantly increased if injuries occurred during pregnancy. Fetal stem cells appear to respond to maternal injury signals and may play a role in maternal tissue regeneration during pregnancy.Receptor-like kinases (RLKs) in plants are a large superfamily of proteins that are structurally similar. RLKs are involved in a diverse array of plant responses including development, growth, hormone perception and the response to pathogens. Current studies have focused attention on plant receptor-like kinases as an important class of sentinels acting in plant defense responses. RLKs have been identified that act in both broad-spectrum, elicitor-initiated defense responses and as dominant resistance (R) genes in race-specific pathogen defense. Most defense-related RLKs are of the leucine-rich repeat (LRR) subclass although new data are highlighting other classes of RLKs as important players in defense responses. As our understanding of RLK structure, activation and signaling has expanded, the role of the ubiquitin/proteasome system in the regulation of these receptors has emerged as a central theme.Purpose Epileptic mutant EL mice show secondary generalized seizures. Seizure discharges initiate in the parietal cortex and generalize through the hippocampus. We have previously demonstrated an increase in the activity of inducible nitric oxide synthetase (iNOS) as well as a decrease in the activity of superoxide dismutase (SOD) in the hippocampus of EL mice, suggesting that cell toxic free radicals are increased in the brain of EL mice. In parallel with this, neurotrophic factors were significantly increased in the hippocampus of EL mice in earlier developmental stages before exhibiting frequent seizures. These findings were no longer present after frequent seizures, suggesting that these events may trigger ictogenesis. On the other hand, it is reported that limbic seizures rapidly induce cytokines and related inflammatory mediators. It remains to be seen, however, whether cytokines contribute to the transition from interictal to ictal state. The present study was designed to address this issue using EL mice. Methods EL mice at the age from 4 to 23 weeks and their control animal, DDY mice at the age of 10 and 20 weeks were used. Seizures were induced in EL mice once every week since 5 weeks. Cytokines, such as interleukin-1 alpha (IL-1a), interleukin 1-beta (IL-1b), IL-6, IL-1 receptor (IL-1r), IL-1 receptor antagonist (IL-ra) and tumor necrosis factor alpha (TNF-a) were examined by Western blotting in the ‘focus complex’ of brain (namely, in the parietal cortex and hippocampus) of EL mice in the interictal period at different developmental stages. In 15 week old EL mice, which show seizures once a week, these cytokines were similarly determined 5 min, 2 hr, 4 hr, 11 hr, 24 hr, 3 days and 6 days after the last seizure induced. Results A significant increase in the level of cytokines was observed in the brain of EL mice at any stages during development, compared with the level of cytokines in the brain of control DDY. Cytokines were increased predominantly before experiencing frequent seizures. In EL mice at the age of 15 weeks, the level of cytokines in the hippocampus was highest 6 days after seizures. In the parietal cortex, cytokines were most highly expressed 2 hr after seizures. The results indicate that cytokines were kept up-regulated until next seizures in the hippocampus, whereas they were transiently up-regulated immediately after seizures in the parietal cortex. Conclusion It is concluded that in the brain of EL mice, pro-inflammatory cytokines are increased progressively and periodically in association with the development and the seizure activity, respectively. A periodic increase of cytokines prior to the next seizure episode may play a role in triggering the ictal activity. Namely, alteration of region-specific cytokines may induce ictal activities from the interictal state. It is conceivable that inflammatory cytokines may work together with neuronal factors during epileptogenesis and in the transition from interictal to ictal state.Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU.DNA microarray is a powerful tool in biomedical research. However, transcriptomic profiling using DNA microarray is subject to many variations including biological variability. To evaluate the different sources of variation in mRNA gene expression profiles, gene expression profiles were monitored using the Affymetrix RatTox U34 arrays in cultured primary hepatocytes derived from six rats over a 26 hour period at 6 time points (0h, 2h, 5h, 8h, 14h and 26h) with two replicate arrays at each time point for each animal. In addition, the impact of sample size on the variability of differentially expressed gene lists and the consistency of biological responses were also investigated. Excellent intra-animal reproducibility was obtained at all time points with 0 out of 370 present probe sets across all time points showing significant difference between the 2 replicate arrays (3-way ANOVA, p ≤ 0.0001). However, large inter-animal biological variation in mRNA expression profiles was observed with 337 out of 370 present probe sets showing significant differences among 6 animals (3-way ANOVA, p ≤ 0.05). Principal Component Analysis (PCA) revealed that time effect (PC1) in this data set accounted for 47.4% of total variance indicating the dynamics of transcriptomics. The second and third largest effects came from animal difference, which accounted for 16.9% (PC2 and PC3) of the total variance. The reproducibility of gene lists and their functional classification was declined considerably when the sample size was decreased. Overall, our results strongly support that there is significant inter-animal variability in the time-course gene expression profiles, which is a confounding factor that must be carefully evaluated to correctly interpret microarray gene expression studies. The consistency of the gene lists and their biological functional classification are also sensitive to sample size with the reproducibility decreasing considerably under small sample size.Corticosteroids (CS) regulate many enzymes at both mRNA and protein levels. This study used microarrays to broadly assess regulation of various genes related to the greater urea cycle and employs pharmacokinetic/pharmacodynamic (PK/PD) modeling to quantitatively analyze and compare the temporal profiles of these genes during acute and chronic exposure to methylprednisolone (MPL). One group of adrenalectomized male Wistar rats received an intravenous bolus dose (50 mg/kg) of MPL, whereas a second group received MPL by a subcutaneous infusion (Alzet osmotic pumps) at a rate of 0.3 mg/kg/hr for seven days. The rats were sacrificed at various time points over 72 hours (acute) or 168 hours (chronic) and livers were harvested. Total RNA was extracted and Affymetrix® gene chips (RG_U34A for acute and RAE 230A for chronic) were used to identify genes regulated by CS. Besides five primary urea cycle enzymes, many other genes related to the urea cycle showed substantial changes in mRNA expression. Some genes that were simply up- or down-regulated after acute MPL showed complex biphasic patterns upon chronic infusion indicating involvement of secondary regulation. For the simplest patterns, indirect response models were used to describe the nuclear steroid-bound receptor mediated increase or decrease in gene transcription (e.g. tyrosine aminotransferase, glucocorticoid receptor). For the biphasic profiles, involvement of a secondary biosignal was assumed (e.g. ornithine decarboxylase, CCAAT/enhancer binding protein) and more complex models were derived. Microarrays were used successfully to explore CS effects on various urea cycle enzyme genes. PD models presented in this report describe testable hypotheses regarding molecular mechanisms and quantitatively characterize the direct or indirect regulation of various genes by CS.Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fits better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration.Skin irritation is a complex phenomenon, and keratinocytes play an important role in it. We have recently characterized the expression and protective role of adipose differentiation related protein (ADRP) in skin irritation. In particular, ADRP expression is induced to recover functional cell membrane following the cell damage caused by skin irritants. The purpose of this study was to characterize in a human keratinocyte cells line (NCTC 2544) the biochemical events that lead to ADRP expression following SDS treatment, and in particular, to investigate the role of transcription factor SP-1. Analysis of ADRP promoter region revealed the presence of a potential binding site for the transcription factor SP-1 close to the start site. Evaluated by measuring the DNA binding activity, we found that SDS induced a dose and time related SP-1 activation, which was correlated with SDS-induced ADRP mRNA expression. Furthermore, SDS-induced SP-1 activation, ADRP mRNA expression and lipid droplets accumulation could be modulated by mithramycin A, an antibiotic that selectively binds to the GC box preventing SP-1 binding and gene expression. This demonstrated that SDS-induced ADRP expression was mediated in part through the transcription factor SP-1. In addition, SDS-induced SP-1 activation and ADRP expression could be modulated by the calcium chelator BAPTA, indicating a role of calcium in ADRP-induction. Thus, every time an irritant perturbs the membrane barrier, it renders the membrane leaky and allows extracellular calcium to enter the cells, an event that provides the upstream mechanisms initiating the signaling cascade that triggers the activation of SP-1 and culminates in the enhancement of ADRP expression, which helps to restore the normal homeostasis and ultimately repairs the to membrane.Intergenic repeat units of 127-bp (RU-1) and 168-bp (RU-2), as well as a newly-found class of 103-bp (RU-3), represent small mobile sequences in enterobacterial genomes present in multiple intergenic regions. These repeat sequences display similarities to eukaryotic miniature inverted-repeat transposable elements (MITE). The RU mobile elements have not been reported to encode amino acid sequences. An in silico approach was used to scan genomes for location of repeat units. RU sequences are found to have open reading frames, which are present in annotated gene loci whereby the RU amino acid sequence is maintained. Gene loci that display repeat units include those that encode large proteins which are part of super families that carry conserved domains and those that carry predicted motifs such as signal peptide sequences and transmembrane domains. A putative exported protein in Y. pestis and a phylogenetically conserved putative inner membrane protein in Salmonella species represent some of the more interesting constructs. We hypothesize that a major outcome of RU open reading frame fusions is the evolutionary emergence of new proteins.In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy.


Annual Review of Microbiology | 2013

Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases

Kimberly B. Decker; Deborah M. Hinton

Multisubunit RNA polymerases are complex protein machines that require a specificity factor for the recognition of a specific transcription start site. Although bacterial σ factors are thought to be quite different from the specificity factors employed in higher organisms, a comparison of the σ/RNA polymerase structures with recent structures of eukaryotic Pol II together with TFIIB highlights significant functional similarities. Other work reveals that both bacterial and eukaryotic promoters are composed of modular elements that are used in different combinations. Bacteria, archaea, and eukaryotes also utilize similar strategies to alter core promoter specificity, from specificity factor exchange to the employment of activators that bind close to or overlap core promoter sequences, directing the transcriptional machinery to a new start site. Here we examine the details of core promoter recognition in bacteria that reveal the transcriptional similarities throughout biology.


Journal of Bacteriology | 2002

The Bacteriophage T4 Transcription Activator MotA Interacts with the Far-C-Terminal Region of the σ70 Subunit of Escherichia coli RNA Polymerase

Suchira Pande; Anna Makela; Simon L. Dove; Bryce E. Nickels; Ann Hochschild; Deborah M. Hinton

Transcription from bacteriophage T4 middle promoters uses Escherichia coli RNA polymerase together with the T4 transcriptional activator MotA and the T4 coactivator AsiA. AsiA binds tightly within the C-terminal portion of the sigma70 subunit of RNA polymerase, while MotA binds to the 9-bp MotA box motif, which is centered at -30, and also interacts with sigma70. We show here that the N-terminal half of MotA (MotA(NTD)), which is thought to include the activation domain, interacts with the C-terminal region of sigma70 in an E. coli two-hybrid assay. Replacement of the C-terminal 17 residues of sigma70 with comparable sigma38 residues abolishes the interaction with MotA(NTD) in this assay, as does the introduction of the amino acid substitution R608C. Furthermore, in vitro transcription experiments indicate that a polymerase reconstituted with a sigma70 that lacks C-terminal amino acids 604 to 613 or 608 to 613 is defective for MotA-dependent activation. We also show that a proteolyzed fragment of MotA that contains the C-terminal half (MotA(CTD)) binds DNA with a K(D(app)) that is similar to that of full-length MotA. Our results support a model for MotA-dependent activation in which protein-protein contact between DNA-bound MotA and the far-C-terminal region of sigma70 helps to substitute functionally for an interaction between sigma70 and a promoter -35 element.


Molecular Microbiology | 2006

The bacteriophage T4 middle promoter PuvsX: analysis of regions important for binding of the T4 transcriptional activator MotA and for activation of transcription

Roslyn March-Amegadzie; Deborah M. Hinton

Bacteriophage T4 middle promoters, which are transcribed using phage‐modified host RNA polymerase and the T4 transcriptional activator, MotA, match the host σ70 consensus sequence at – 10, but they have a different consensus ((t/a)(t/a)TGCTT(t/c)A) (a MotA box) at – 30. While the T4 middle promoter Puvsx has these – 10 and –30 motifs, it also has matches to the MotA box at –35, –51, –70, and –87. We show that MotA binds to Puvsx DNA, footprinting a region that includes the MotA boxes at –30, –35, and –51. Very high levels of MotA are required for footprinting and gel‐shift experiments, and protein‐DNA complexes formed in the presence of both phage‐modified polymerase and MotA are more resistant to Hindlll cleavage than those formed with either protein alone. These results suggest that MotA‐DNA interactions may be stabilized by phage‐modified polymerase. Sequences between –18 and –38 are absolutely required for MotA activation of transcription, but sequences upstream of –38 are stimulatory, particularly when chloride instead of glutamate is the major anion. Our results dissect Puvsx into a core promoter, downstream of ‐38, which is required for MotA activation, and an upstream region that enhances transcription especially under conditions less favourable for protein‐DNA interactions.


Methods in Enzymology | 1996

Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA.

Deborah M. Hinton; Roslyn March-Amegadzie; Jeffrey S. Gerber; Mridula Sharma

Publisher Summary This chapter discusses the purification of the components of the middle transcription system, T4-modified host RNA polymerase, MotA protein, and Asia protein; and the MotA-dependent transcription reaction from middle promoters in vitro . An in vitro transcription system is developed for studying MotA-dependent transcription from T4 middle promoters. Using partially purified RNA polymerase isolated after T4 infection and highly purified MotA protein, transcription from several T4 middle promoters has been demonstrated in vitro . Further characterization and purification of the fully modified polymerase will allow the identification of any other T4 functions that are involved in MotA-dependent transcription from middle promoters. The level of MotA-dependent transcription from PuvsX by the fully modified polymerase is dependent on the reaction conditions. Reproducibly high levels of MotA-dependent transcription are observed when using the 1× Kglu buffer and the incubation conditions given earlier. However, the use of very high chloride concentrations, such as the 1× KCl transcription buffer, results in much less transcription as the level of MotA to the DNA is decreased. In addition, the pretranscription complex made in a buffer with a high chloride concentration is less stable to heparin challenge than that made in the glutamate buffer. It is not clear whether this phenomenon is related to the decreased activity of the T4-modified polymerase seen in the general assay or to the chloride sensitivity noted for the phage-modified polymerase in very early work.


Methods in Enzymology | 1995

[43] Purification of bacteriophage T4 DNA replication proteins

Nancy G. Nossal; Deborah M. Hinton; Lisa J. Hobbs; Peter Spacciapoli

Publisher Summary This chapter describes purification procedures for most of the T4 replication proteins. The bacteriophage T4 DNA replication system is a relatively simple system of ten T4 encoded proteins that together catalyze rapid and highly accurate copying of the two strands of a replication fork in vitro . The genes for most of the T4 replication proteins were first identified in studies of conditionally lethal phage mutants. These proteins were initially purified from T4 infected Escherichia coli using either complementation assays, which measured their ability to stimulate DNA synthesis by a crude extract of cells infected with a replication-defective T4 mutant, or functional assays of their ability to catalyze or stimulate specific replication reactions. The T4 proteins required for leading and lagging strand synthesis in vitro are now cloned, sequenced, and highly purified. The purification procedures use autoclaved buffers (with 2-mercaptoethanol, DTT, and MgSO4 added, if indicated, after sterilization), and sterile columns, plastic, and glassware. Otherwise, the purification steps are carried out at 4°. During sonication, the extract is kept in a salt-ice water bath, and the sonication interrupted periodically to maintain the temperature below 8°. Extracts and intermediate fractions are frozen in dry ice and stored at -80° if there is a delay in going to the next step. The final purified proteins are stored in small aliquots at -80°. Methods to assay and purify the T4 replication proteins from T4 infected E. coli and from E. coli with expression plasmids are developed in several laboratories.


Molecular Microbiology | 2013

In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA

Alice Boulanger; Qing Chen; Deborah M. Hinton; Scott Stibitz

We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos‐tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non‐permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non‐permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA‐regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two‐component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.


Microbiology | 2012

The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA

Kimberly B. Decker; Tamara James; Scott Stibitz; Deborah M. Hinton

Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, fim2 and fim3, which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the fim genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby B. pertussis, which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen.


Virology Journal | 2010

Transcriptional control in the prereplicative phase of T4 development

Deborah M. Hinton

Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The promoter spacer influences transcription initiation via σ70 region 1.1 of Escherichia coli RNA polymerase

India G. Hook-Barnard; Deborah M. Hinton

Transcription initiation is a dynamic process in which RNA polymerase (RNAP) and promoter DNA act as partners, changing in response to one another, to produce a polymerase/promoter open complex (RPo) competent for transcription. In Escherichia coli RNAP, region 1.1, the N-terminal 100 residues of σ70, is thought to occupy the channel that will hold the DNA downstream of the transcription start site; thus, region 1.1 must move from this channel as RPo is formed. Previous work has also shown that region 1.1 can modulate RPo formation depending on the promoter. For some promoters region 1.1 stimulates the formation of open complexes; at the Pminor promoter, region 1.1 inhibits this formation. We demonstrate here that the AT-rich Pminor spacer sequence, rather than promoter recognition elements or downstream DNA, determines the effect of region 1.1 on promoter activity. Using a Pminor derivative that contains good σ70-dependent DNA elements, we find that the presence of a more GC-rich spacer or a spacer with the complement of the Pminor sequence results in a promoter that is no longer inhibited by region 1.1. Furthermore, the presence of the Pminor spacer, the GC-rich spacer, or the complement spacer results in different mobilities of promoter DNA during gel electrophoresis, suggesting that the spacer regions impart differing conformations or curvatures to the DNA. We speculate that the spacer can influence the trajectory or flexibility of DNA as it enters the RNAP channel and that region 1.1 acts as a “gatekeeper” to monitor channel entry.

Collaboration


Dive into the Deborah M. Hinton's collaboration.

Top Co-Authors

Avatar

Scott Stibitz

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Qing Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leslie Knipling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Meng-Lun Hsieh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mridula Sharma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kimberly B. Decker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tamara James

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alice Boulanger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyung Moon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy G. Nossal

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge