Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah M. Kristan is active.

Publication


Featured researches published by Deborah M. Kristan.


Physiological and Biochemical Zoology | 2000

Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus).

Kimberly A. Hammond; Deborah M. Kristan

Recently, much interest has been expressed in understanding how animals use phenotypic plasticity of tissue size and function to meet increased metabolic demands. We set out to learn (i) whether female deer mice (Peromyscus maniculatus) given lactation (two to seven pups per litter), cold (5°C), or cold plus lactation as energy demands display phenotypic plasticity in organ size and function; (ii) whether that plasticity is similar to laboratory mice given the same demands; and (iii) whether lactational performance in deer mice is derived from limits on central or peripheral organs. We found that deer mice responded to lactation by increasing digestible food intake and increasing the masses of the stomach, small intestine, cecum and liver, and the length of the small intestine. Heart mass was lower in lactating than in nonlactating mice. Cold exposure also caused increases in digestible food intake and increases in the masses of the small intestine, kidney, and heart. We conclude that deer mice display organ tissue plasticity in response to both lactation and cold exposure in a similar manner to laboratory mice. We also conclude that deer mice are not limited by central processing organs because they are able to increase digestive organ size continuously with increased energetic demands.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Regulation of Nrf2 signaling and longevity in naturally long-lived rodents.

Kaitlyn N. Lewis; Emily Wason; Yael H. Edrey; Deborah M. Kristan; Eviatar Nevo; Rochelle Buffenstein

Significance Both genetically altered and naturally long-lived mammals are more resistant to toxic compounds that may cause cancer and age-associated diseases than their shorter-lived counterparts. The mechanisms by which this stress resistance occurs remain elusive. We found that longer-lived rodent species had markedly higher levels of signaling activity of the multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) and that this increase in cytoprotective signaling appeared to be due to species differences in Kelch-like ECH-Associated Protein 1 (Keap1) and β-transducin repeat-containing protein (βTrCP) regulation of Nrf2 activity. Both of these negative regulators of Nrf2-signaling activity are significantly lower in longer-lived species. By targeting the proteins that regulate Nrf2 rather than Nrf2 itself, we may be able to identify new therapies that impact aging and age-associated diseases such as cancer. The preternaturally long-lived naked mole-rat, like other long-lived species and experimental models of extended longevity, is resistant to both endogenous (e.g., reactive oxygen species) and environmental stressors and also resists age-related diseases such as cancer, cardiovascular disease, and neurodegeneration. The mechanisms behind the universal resilience of longer-lived organisms to stress, however, remain elusive. We hypothesize that this resilience is linked to the activity of a highly conserved transcription factor, nuclear factor erythroid 2-related factor (Nrf2). Nrf2 regulates the transcription of several hundred cytoprotective molecules, including antioxidants, detoxicants, and molecular chaperones (heat shock proteins). Nrf2 itself is tightly regulated by mechanisms that either promote its activity or increase its degradation. We used a comparative approach and examined Nrf2-signaling activity in naked mole-rats and nine other rodent species with varying maximum lifespan potential (MLSP). We found that constitutive Nrf2-signaling activity was positively correlated (P = 0.0285) with MLSP and that this activity was also manifested in high levels of downstream gene expression and activity. Surprisingly, we found that species longevity was not linked to the protein levels of Nrf2 itself, but rather showed a significant (P < 0.01) negative relationship with the regulators Kelch-like ECH-Associated Protein 1 (Keap1) and β-transducin repeat-containing protein (βTrCP), which target Nrf2 for degradation. These findings highlight the use of a comparative biology approach for the identification of evolved mechanisms that contribute to health span, aging, and longevity.


Aging Cell | 2007

Chronic calorie restriction increases susceptibility of laboratory mice (Mus musculus) to a primary intestinal parasite infection

Deborah M. Kristan

Long‐term calorie restriction (CR) has numerous benefits; however, effects of CR on susceptibility to intact pathogens are not well understood. Because CR enhances immune function of laboratory mice (Mus musculus), it was hypothesized that mice subjected to CR would be less susceptible to experimental infections of the intestinal parasite Heligmosomoides bakeri. Furthermore, because H. bakeri must combat a greater host immune response by CR mice compared to fully fed mice, it also was also hypothesized that (i) worms living in CR hosts would have lower reproduction than worms from ad libitum‐fed mice, and (ii) CR mice would have a more female‐biased sex ratio as male worms may be more vulnerable to host immune response than female worms. Mice were subjected to CR for 6.7 months and were then infected with H. bakeri for one additional month. As expected, CR mice had equal or enhanced immune response (eosinophils and immunoglobin G1 production) to H. bakeri infection compared to ad libitum‐fed mice, and CR mice harbored a more female‐biased sex ratio than ad libitum‐fed mice. Contrary to predictions, CR mice had more worms than ad libitum‐fed mice and the worms from CR mice produced more eggs than worms from ad libitum‐fed mice. These data indicate that, despite the evidence that long‐term CR enhances traditional measures of immune function, CR may actually increase susceptibility to intact parasite infection. Furthermore, changes in worm reproduction and differential survival of male vs. female worms may influence host–parasite transmission dynamics during long‐term host CR.


Aging Cell | 2003

Are mice calorically restricted in nature

Steven N. Austad; Deborah M. Kristan

An important question about traditional caloric restriction (CR) experiments on laboratory mice is how food intake in the laboratory compares with that of wild mice in nature. Such knowledge would allow us to distinguish between two opposing views of the anti‐aging effect of CR – whether CR represents, in laboratory animals, a return to a more normal level of food intake, compared with excess food consumption typical of laboratory conditions or whether CR represents restriction below that of animals living in nature, i.e. the conditions under which house mice evolved. To address this issue, we compared energy use of three mouse genotypes: (1) laboratory‐selected mouse strains (= laboratory mice), (2) house mice that were four generations or fewer removed from the wild (= wild‐derived mice) and (3) mice living in nature (= wild mice). We found, after correcting for body mass, that ad libitum fed laboratory mice eat no more than wild mice. In fact, under demanding natural conditions, wild mice eat even more than ad libitum fed laboratory mice. Laboratory mice do, however, eat more than wild‐derived mice housed in similar captive conditions. Therefore, laboratory mice have been selected during the course of domestication for increased food intake compared with captive wild mice, but they are not particularly gluttonous compared with wild mice in nature. We conclude that CR experiments do in fact restrict energy consumption beyond that typically experienced by mice in nature. Therefore, the retarded aging observed with CR is not due to eliminating the detrimental effects of overeating.


Aging Cell | 2012

Sustained high levels of neuregulin‐1 in the longest‐lived rodents; a key determinant of rodent longevity

Yael H. Edrey; Diana Casper; Dorothée Huchon; James Mele; Jonathan Gelfond; Deborah M. Kristan; Eviatar Nevo; Rochelle Buffenstein

Naked mole‐rats (Heterocephalus glaber), the longest‐lived rodents, live 7–10 times longer than similarly sized mice and exhibit normal activities for approximately 75% of their lives. Little is known about the mechanisms that allow them to delay the aging process and live so long. Neuregulin‐1 (NRG‐1) signaling is critical for normal brain function during both development and adulthood. We hypothesized that long‐lived species will maintain higher levels of NRG‐1 and that this contributes to their sustained brain function and concomitant maintenance of normal activity. We monitored the levels of NRG‐1 and its receptor ErbB4 in H. glaber at different ages ranging from 1 day to 26 years and found that levels of NRG‐1 and ErbB4 were sustained throughout development and adulthood. In addition, we compared seven rodent species with widely divergent (4–32 year) maximum lifespan potential (MLSP) and found that at a physiologically equivalent age, the longer‐lived rodents had higher levels of NRG‐1 and ErbB4. Moreover, phylogenetic independent contrast analyses revealed that this significant strong correlation between MLSP and NRG‐1 levels was independent of phylogeny. These results suggest that NRG‐1 is an important factor contributing to divergent species MLSP through its role in maintaining neuronal integrity.


Age | 2008

Calorie restriction and susceptibility to intact pathogens

Deborah M. Kristan

Long-term calorie restriction (CR) causes numerous physiological changes that ultimately increase mean and maximum lifespan of most species examined to date. One physiological change that occurs with CR is enhanced immune function, as tested using antigens and mitogens to stimulate an immune response. Fewer studies have used intact pathogen exposure to test whether the enhanced capacity of the immune response during CR actually decreases susceptibility of hosts to their pathogens. So far, studies using intact bacteria, virus, and helminth worm exposure indicate that, despite similar or enhanced immune system function, CR hosts are more susceptible to infection by intact pathogens than their fully fed counterparts. Long-term CR studies that examine susceptibility to a variety of parasite taxa will help determine if direct CR or CR mimetics will be beneficial to people living in pathogen-rich environments.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002

Developmental plasticity in aerobic performance in deer mice (Peromyscus maniculatus)

Kimberly A. Hammond; M.A Chappell; Deborah M. Kristan

While several studies have examined the abiotic effects of altitude (low ambient temperatures and hypoxia) on the aerobic performance of small mammals, few have explored the effects of development and maturation at different altitudes on aerobic performance as adults. We examined the basal metabolism and aerobic performance of deer mice (Peromyscus maniculatus) under four different developmental and testing regimes: (1) reared (gestation through weaning) and tested at high altitude; (2) reared and tested at low altitude; (3) reared at low altitude and tested at high altitude after acclimation; and (4) reared at low altitude and tested in hypoxia without acclimation. We found that mice that developed and were tested at low altitudes had a higher aerobic capacity (both aerobic performance and basal metabolic rate) than those that developed, or were acclimated as adults, at high altitudes. In addition, we found that mice that developed at high altitude did not have a higher aerobic capacity than those that developed at low altitude and were acclimated to high altitude as adults. Both groups tested at high altitudes had higher hematocrits (% red blood cells) and hemoglobin than mice tested at low altitudes. Surprisingly, mice acclimated to low altitudes and given an instantaneous exposure to hypoxia did not suffer a depression in aerobic performance.


Brain Behavior and Evolution | 2006

The Eye of the Laboratory Mouse Remains Anatomically Adapted for Natural Conditions

Jonathan M. Shupe; Deborah M. Kristan; Steven N. Austad; Deborah L. Stenkamp

Evolutionary effects of domestication have been demonstrated for several body systems, including the eye, and for several vertebrate species, including the mouse. Given the importance of the laboratory mouse to vision science, we wished to determine whether the anatomical and histological features of the eyes of laboratory mice are distinct from those of their naturally adapted, wild counterparts. We measured dimensions and masses of whole eyes and lenses from a wild population plus three inbred strains (C57BL/6J, NZB/BINJ, and DBA/1J) of the house house, Mus musculus, as well as wild and outbred laboratory-domesticated stock of the deer mouse, Peromyscus maniculatus. Histological preparations from these eyes were used to determine outer nuclear layer thickness, linear density of the ganglion cell layer, and for indirect immunofluorescence evaluation of cone opsin expression. For all of these traits, no statistically significant differences were found between any laboratory strain and its wild counterpart. The evolutionary effects of domestication of mice therefore do not include changes to the eye in any variable measured, supporting the continued use of this animal as a model for a naturally adapted visual system.


The Journal of Experimental Biology | 2004

Morphological plasticity varies with duration of infection: evidence from lactating and virgin wild-derived house mice (Mus musculus) infected with an intestinal parasite (Heligmosomoides polygyrus; Nematoda)

Deborah M. Kristan; Kimberly A. Hammond

SUMMARY With chronic parasite infection, host response to the parasite may change throughout the duration of the infection as the host progresses from the acute to the chronic phase. We investigated the effects of parasite infection ranging in duration from 30 to 120 days on host morphology both alone and in combination with lactation by using captive wild-derived house mice (Mus musculus) experimentally infected with a naturally occurring intestinal nematode (Heligmosomoides polygyrus). We found that some changes in host morphology were greatest at 30-60 days post-infection (e.g. spleen mass) followed by a decline towards the control state whereas other morphological changes were greatest at 90-120 days post-infection (e.g. small intestine mass) after a relatively steady increase with infection duration. For all infection durations, the morphological responses to parasite infection were similar for virgin and lactating mice (except for lean body mass). After accounting for changes in body mass with lactation, lactating mice increased organs of the gastrointestinal tract as well as liver and kidney but had less body fat than virgin mice. This is the first study to demonstrate that morphological plasticity of mice parasitized by H. polygyrus varies with infection duration and that this variation is generally similar for lactating and virgin mice.


Age | 2008

Comparative and alternative approaches and novel animal models for aging research

Donna J. Holmes; Deborah M. Kristan

This special issue of AGE showcases powerful alternative or unconventional approaches to basic aging research, including the use of exceptionally long-lived animal model species and comparative methods from evolutionary biology. In this opening paper, we introduce several of these alternative aging research themes, including the comparative phylogenetic approach. This approach applies modern inferential methods for dissecting basic physiological and biochemical mechanisms correlated with phenotypic traits including longevity, slow aging, sustained somatic maintenance, and repair of molecular damage. Comparative methods can be used to assess the general relevance of specific aging mechanisms—including oxidative processes—to diverse animal species, as well as to assess their potential clinical relevance to humans and other mammals. We also introduce several other novel, underexploited approaches with particular relevance to biogerontology, including the use of model animal species or strains that retain natural genetic heterogeneity, studies of effects of infectious disease and parasites on aging and responses to caloric restriction, studies of reproductive aging, and naturally occurring sex differences in aging. We emphasize the importance of drawing inferences from aging phenomena in laboratory studies that can be applied to clinically relevant aging syndromes in long-lived, outbred animals, including humans.

Collaboration


Dive into the Deborah M. Kristan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rochelle Buffenstein

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Gelfond

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Samantha Lang

California State University

View shared research outputs
Top Co-Authors

Avatar

Steven N. Austad

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yael H. Edrey

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

David A Kramer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Casper

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge